
Oracle® Database
Real Application Security Administrator's and
Developer's Guide

19c
E95725-01
January 2019

Oracle Database Real Application Security Administrator's and Developer's Guide, 19c

E95725-01

Copyright © 2012, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Rod Ward

Contributing Authors: S. Jeloka, M. Chaliha, T. Das, S. Pelski, R. Leyderman

Contributors: J. Greenberg, S. Adhikari, T. Ahmed, R. Bhatti, C. C. Chui, P. Deshmukh, S. Gul, M. Ho, Y. Hu,
P. Huey, S. Jawarikapisha, T. Keefe, P. Knaggs, S. Kwak, H. Li, Y. Li, C. Liang, S. Liu, C. Lei, S. Namuduri,
J. Narasinghanallur, G. Narayanan, P. Needham, E. Paapanen, V. Pesati, R. Ramachandra, P.
Ramakrishna, D. Raphaely, Y. Ru, J. Samuel, S. Tata, A. Wang, W. Wang, S. Watt, M. Wei, A. Williams, M.
Xu, H. Zhang, S. Zhao, S. Zhou

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxiv

Documentation Accessibility xxiv

Related Documents xxiv

Conventions xxiv

 Changes in This Release for Oracle Database Real Application
Security Administrator's and Developer's Guide

Changes in Oracle Database Release 19c Version 19.1 xxvi

Changes in Oracle Database Release 18c Version 18.1 xxvi

Changes in Oracle Database 12c Release 2 (12.2.0.1) xxvii

1 Introducing Oracle Database Real Application Security

What Is Oracle Database Real Application Security? 1-1

Disadvantages of Traditional Security for Managing Application Users 1-2

Advantages of Real Application Security 1-2

Architecture of Real Application Security 1-2

Data Security Concepts Used in Real Application Security 1-3

About Data Security with Oracle Database Real Application Security 1-4

Principals: Users and Roles 1-5

Understanding the Difference Between Database Users and Application
Users 1-6

Understanding the Difference Between Database Roles and Application
Roles 1-6

Granting Database Privileges to Application Users and Application Roles 1-7

Application Privileges 1-7

Security Classes in Oracle Database Real Application Security 1-8

Access Control Entry (ACE) 1-8

Access Control List (ACL) 1-8

Data Security Policy 1-9

Application Session Concepts Used in Application Security 1-9

iii

Flow of Design and Development 1-10

Design Phase 1-10

Development Flow Steps 1-11

Scenario: Security Human Resources (HR) Demonstration of Employee Information 1-12

Basic Security HR Demo Scenario: Description and Security Requirements 1-13

Basic HR Scenario: Implementation Overview 1-14

About Auditing in an Oracle Database Real Application Security Environment 1-16

Support for Pluggable Databases 1-16

2 Configuring Application Users and Application Roles

About Configuring Application Users 2-1

About Application User Accounts 2-1

General Procedures for Creating Application User Accounts 2-2

Creating a Simple Application User Account 2-3

About Creating a Direct Login Application User Account 2-4

Creating Direct Login Application User Accounts 2-4

Procedure for Creating the Direct Login Application User Account 2-4

Setting a Password Verifier for Direct Application User Accounts 2-6

Oracle Label Security Context Is Established in Direct Logon Session 2-7

Resetting the Application User's Password with the SQL*Plus PASSWORD
Command 2-8

Configuring an Application User Switch 2-10

Validating an Application User 2-12

About Configuring Application Roles 2-12

About Application Roles 2-12

Regular and Dynamic Application Roles 2-13

Regular Application Roles 2-13

Dynamic Application Roles 2-13

About Configuring an Application Role 2-14

Creating a Regular Application Role 2-14

Creating a Dynamic Application Role 2-15

Validating an Application Role 2-15

Predefined Regular Application Roles and Dynamic Application Roles 2-15

Effective Dates for Application Users and Application Roles 2-16

About Granting Application Privileges to Principals 2-17

About Granting an Application Role to an Application User 2-17

Creating a New Application User and Granting This User an Application
Role 2-17

Granting an Application Role to an Existing Application User 2-18

Granting an Application Role to Another Application Role 2-18

iv

Granting a Database Role to an Application Role 2-18

3 Configuring Application Sessions

About Application Sessions 3-1

About Application Sessions in Real Application Security 3-2

Advantages of Application Sessions 3-3

About Creating and Maintaining Application Sessions 3-3

Creating an Application Session 3-3

Creating an Anonymous Application Session 3-4

Attaching an Application Session to a Traditional Database Session 3-5

Setting a Cookie for an Application Session 3-7

Assigning an Application User to an Anonymous Application Session 3-7

Switching a Current Application User to Another Application User in the Current
Application Session 3-8

About Creating a Global Callback Event Handler Procedure 3-9

Configuring Global Callback Event Handlers for an Application Session 3-11

Saving an Application Session 3-13

Detaching an Application Session from a Traditional Database Session 3-13

Destroying an Application Session 3-15

About Manipulating the Application Session State 3-15

About Using Namespace Templates to Create Namespaces 3-16

Components of a Namespace Template 3-16

About Namespace Views 3-17

Creating a Namespace Template for an Application Session 3-17

Initializing a Namespace in an Application Session 3-18

Initializing a Namespace When the Session Is Created 3-18

Initializing a Namespace When the Session Is Attached 3-19

Initializing a Namespace When a Named Application User Is Assigned to an
Anonymous Application Session 3-20

Initializing a Namespace When the Application User Is Switched in an
Application Session 3-21

Initializing a Namespace Explicitly 3-22

Setting Session Attributes in an Application Session 3-23

Getting Session Attributes in an Application Session 3-24

Creating Custom Attributes in an Application Session 3-25

Deleting a Namespace in an Application Session 3-26

Enabling Application Roles for a Session 3-27

Disabling Application Roles for a Session 3-27

About Administrative APIs for External Users and Roles 3-28

About Real Application Security Session Privilege Scoping Through ACL 3-28

v

Granting Session Privileges on a Principal Using an ACL 3-32

4 Configuring Application Privileges and Access Control Lists

About Application Privileges 4-1

Aggregate Privilege 4-1

ALL Privilege 4-3

About Configuring Security Classes 4-3

About Security Classes 4-4

Security Class Inheritance 4-4

Security Class as Privilege Scope 4-5

DML Security Class 4-5

About Validating Security Classes 4-5

Manipulating Security Classes 4-5

About Configuring Access Control Lists 4-7

About ACLs and ACEs 4-8

Creating ACLs and ACEs 4-9

Deny 4-9

Invert 4-10

ACE Start-Date and End-Date 4-10

About Validating Access Control Lists 4-10

Updating Access Control Lists 4-10

About Checking ACLs for a Privilege 4-12

About Using Multilevel Authentication 4-12

Principal Types 4-13

Access Resolution Results 4-13

ACE Evaluation Order 4-13

ACL Inheritance 4-13

Extending ACL Inheritance 4-14

Constraining ACL Inheritance 4-14

About ACL Catalog Views 4-15

About Security Class Catalog Views 4-15

Data Security 4-15

Data Realms 4-15

Parameterized ACL 4-16

ACL Binding 4-16

5 Configuring Data Security

About Data Security 5-1

About Validating the Data Security Policy 5-2

vi

Understanding the Structure of the Data Security Policy 5-2

About Designing Data Realms 5-4

About Understanding the Structure of a Data Realm 5-5

About Using Static Data Realms 5-6

Using Trace Files to Check for Policy Predicate Errors 5-7

Applying Additional Application Privileges to a Column 5-8

About Enabling Data Security Policy for a Database Table or View 5-10

Enabling Real Application Security Using the APPLY_OBJECT_POLICY
Procedure 5-10

About Applying Multiple Policies for a Table or View 5-11

About How the APPLY_OBJECT_POLICY Procedure Alters a Database Table 5-11

About How ACLs on Table Data Are Evaluated 5-12

About Creating Real Application Security Policies on Master-Detail Related Tables 5-12

About Real Application Security Policies on Master-Detail Related Tables 5-13

About Understanding the Structure of Master Detail Data Realms 5-13

Example of Creating a Real Application Security Policy on Master-Detail
Related Tables 5-14

About Managing Application Privileges for Data Security Policies 5-21

About Bypassing the Security Checks of a Real Application Security Policy 5-21

Using the SQL*Plus SET SECUREDCOL Command 5-22

Using BEQUEATH CURRENT_USER Views 5-23

Using SQL Functions to Determine the Invoking Application User 5-25

Real Application Security: Putting It All Together 5-26

Basic HR Scenario: Implementation Tasks 5-26

Connecting as User SYS to Create Real Application Security Users and
Roles 5-27

Creating Roles and Application Users 5-27

Creating the Security Class and ACLS 5-29

Creating the Data Security Policy 5-31

Validating the Real Application Security Objects 5-32

Disabling a Data Security Policy for a Table 5-32

Running the Security HR Demo 5-33

About Schema Level Real Application Security Policy Administration 5-33

Setting Up and Enabling a Schema Level Data Security Policy 5-35

Disabling the Data Security Policy and Revoking the System Privileges from
the User 5-36

6 Using Real Application Security in Java Applications

About Initializing the Middle Tier 6-1

About Mid-Tier Configuration Mode 6-1

Using the getSessionManager Method 6-1

vii

About Changing the Middle-Tier Cache Setting 6-3

About Setting the Maximum Cache Idle Time 6-3

About Setting the Maximum Cache Size 6-3

About Getting the Maximum Cache Idle Time 6-3

About Getting the Maximum Cache Size 6-3

About Removing Entries from the Cache 6-4

About Clearing the Cache 6-4

About Managing Real Application Security Sessions 6-4

Creating a Real Application Security User Session 6-5

Attaching an Application Session 6-5

Assigning or Switching an Application User 6-6

Enabling Real Application Security Application Roles 6-7

Enabling a Real Application Security Application Role 6-7

Disabling a Real Application Security Application Role 6-7

Checking If a Real Application Security Application Role Is Enabled 6-8

About Performing Namespace Operations as Session User 6-8

Creating Namespaces 6-8

Deleting Namespaces 6-9

Implicitly Creating Namespaces 6-9

About Using Namespace Attributes 6-9

About Performing Namespace Operations as Session Manager 6-11

About Performing Miscellaneous Session-Related Activities 6-11

About Getting the Oracle Connection Associated with the Session 6-12

About Getting the Application User ID for the Session 6-12

Getting the Session ID for the Session 6-12

About Getting a String Representation of the Session 6-12

Getting the Session Cookie 6-12

Setting Session Inactivity Timeout as Session Manager 6-12

Setting the Session Cookie as Session Manager 6-13

Detaching an Application Session 6-13

Destroying A Real Application Security Application Session 6-13

Authenticating Application Users Using Java APIs 6-14

About Authorizing Application Users Using ACLs 6-14

Constructing an ACL Identifier 6-14

Using the checkAcl Method 6-15

About Getting Data Privileges Associated with a Specific ACL 6-15

Human Resources Administration Use Case: Implementation in Java 6-15

Output 6-20

viii

7 Oracle Fusion Middleware Integration with Real Application Security

About External Users and External Roles 7-1

Session APIs for External Users and Roles 7-2

Namespace for External Users 7-2

Creating a Session 7-2

Attaching a Session 7-4

Assigning a User to a Session 7-7

Saving a Session and Aborting a Session 7-9

8 Application Session Service in Oracle Fusion Middleware

About Real Application Security Concepts 8-1

About Application Session Service in Oracle Fusion Middleware 8-3

About the Application Session Filter 8-5

About the Application Session Filter Operation 8-5

About Deployment 8-6

About Application Configuration of the Application Session Filter 8-7

Domain Configuration: Setting Up an Application Session Service to Work with
OPSS and Oracle Fusion Middleware 8-8

Prerequisites 8-8

Manual Configuration 8-9

About Automatic Configuration 8-10

About Application Session APIs 8-11

About Application Session APIs 8-11

About Attaching to an Application Session 8-11

Detaching from an Application Session 8-11

Destroying an Application Session 8-13

About the Privilege Elevation API 8-14

Enabling a Dynamic Role in the Application Session 8-14

About Namespace APIs 8-15

About Creating a Namespace 8-15

About Deleting a Namespace 8-16

About Setting the Namespace Attribute 8-16

About Deleting a Namespace Attribute 8-17

Getting a Namespace Attribute 8-18

About the Check Privilege API 8-19

Checking a Privilege on the ACLs 8-20

Human Resources Demo Use Case: Implementation in Java 8-21

Setting Up the HR Demo Application for External Principals (setup.sql) 8-22

About the Application Session Filter Configuration File (web.xml) 8-26

About the Sample Servlet Application (MyHR.java) 8-29

ix

About the Filter to Set Up the Application Namespace (MyFilter.java) 8-35

About the HR Demo Use Case - User Roles 8-38

About the HR Demo (1) - Logged in as Employee LPOPP 8-39

About the HR Demo (2) - Logged in as HRMGR 8-39

About the HR Demo (3) - Logged in as a Team Manager 8-40

9 Oracle Database Real Application Security Data Dictionary Views

DBA_XS_OBJECTS 9-4

DBA_XS_PRINCIPALS 9-5

DBA_XS_EXTERNAL_PRINCIPALS 9-5

DBA_XS_USERS 9-6

USER_XS_USERS 9-7

USER_XS_PASSWORD_LIMITS 9-8

DBA_XS_ROLES 9-8

DBA_XS_DYNAMIC_ROLES 9-9

DBA_XS_PROXY_ROLES 9-10

DBA_XS_ROLE_GRANTS 9-10

DBA_XS_PRIVILEGES 9-11

USER_XS_PRIVILEGES 9-11

ALL_XS_PRIVILEGES 9-12

DBA_XS_IMPLIED_PRIVILEGES 9-12

USER_XS_IMPLIED_PRIVILEGES 9-13

ALL_XS_IMPLIED_PRIVILEGES 9-13

DBA_XS_PRIVILEGE_GRANTS 9-14

DBA_XS_SECURITY_CLASSES 9-14

USER_XS_SECURITY_CLASSES 9-15

ALL_XS_SECURITY_CLASSES 9-15

DBA_XS_SECURITY_CLASS_DEP 9-15

USER_XS_SECURITY_CLASS_DEP 9-16

ALL_XS_SECURITY_CLASS_DEP 9-16

DBA_XS_ACLS 9-17

USER_XS_ACLS 9-17

ALL_XS_ACLS 9-18

DBA_XS_ACES 9-18

USER_XS_ACES 9-19

ALL_XS_ACES 9-20

DBA_XS_POLICIES 9-21

USER_XS_POLICIES 9-21

ALL_XS_POLICIES 9-22

DBA_XS_REALM_CONSTRAINTS 9-22

x

USER_XS_REALM_CONSTRAINTS 9-23

ALL_XS_REALM_CONSTRAINTS 9-23

DBA_XS_INHERITED_REALMS 9-24

USER_XS_INHERITED_REALMS 9-25

ALL_XS_INHERITED_REALMS 9-25

DBA_XS_ACL_PARAMETERS 9-26

USER_XS_ACL_PARAMETERS 9-26

ALL_XS_ACL_PARAMETERS 9-27

DBA_XS_COLUMN_CONSTRAINTS 9-28

USER_XS_COLUMN_CONSTRAINTS 9-28

ALL_XS_COLUMN_CONSTRAINTS 9-29

DBA_XS_APPLIED_POLICIES 9-29

ALL_XS_APPLIED_POLICIES 9-30

DBA_XS_MODIFIED_POLICIES 9-30

DBA_XS_SESSIONS 9-31

DBA_XS_ACTIVE_SESSIONS 9-31

DBA_XS_SESSION_ROLES 9-32

DBA_XS_SESSION_NS_ATTRIBUTES 9-32

DBA_XS_NS_TEMPLATES 9-33

DBA_XS_NS_TEMPLATE_ATTRIBUTES 9-34

ALL_XDS_ACL_REFRESH 9-34

ALL_XDS_ACL_REFSTAT 9-35

ALL_XDS_LATEST_ACL_REFSTAT 9-36

DBA_XDS_ACL_REFRESH 9-36

DBA_XDS_ACL_REFSTAT 9-37

DBA_XDS_LATEST_ACL_REFSTAT 9-38

USER_XDS_ACL_REFRESH 9-39

USER_XDS_ACL_REFSTAT 9-39

USER_XDS_LATEST_ACL_REFSTAT 9-40

V$XS_SESSION_NS_ATTRIBUTES 9-41

V$XS_SESSION_ROLES 9-41

10

Oracle Database Real Application Security SQL Functions

COLUMN_AUTH_INDICATOR Function 10-1

XS_SYS_CONTEXT Function 10-2

ORA_CHECK_ACL Function 10-4

ORA_GET_ACLIDS Function 10-4

ORA_CHECK_PRIVILEGE Function 10-5

TO_ACLID Function 10-6

xi

11

Oracle Database Real Application Security PL/SQL Packages

DBMS_XS_SESSIONS Package 11-1

Security Model 11-2

Constants 11-2

Object Types, Constructor Functions, Synonyms, and Grants 11-2

Summary of DBMS_XS_SESSIONS Subprograms 11-3

CREATE_SESSION Procedure 11-4

ATTACH_SESSION Procedure 11-5

ASSIGN_USER Procedure 11-7

SWITCH_USER Procedure 11-8

CREATE_NAMESPACE Procedure 11-9

CREATE_ATTRIBUTE Procedure 11-10

SET_ATTRIBUTE Procedure 11-11

GET_ATTRIBUTE Procedure 11-12

RESET_ATTRIBUTE Procedure 11-13

DELETE_ATTRIBUTE Procedure 11-14

DELETE_NAMESPACE Procedure 11-14

ENABLE_ROLE Procedure 11-15

DISABLE_ROLE Procedure 11-16

SET_SESSION_COOKIE Procedure 11-16

REAUTH_SESSION Procedure 11-17

SET_INACTIVITY_TIMEOUT Procedure 11-18

SAVE_SESSION Procedure 11-19

DETACH_SESSION Procedure 11-19

DESTROY_SESSION Procedure 11-20

ADD_GLOBAL_CALLBACK Procedure 11-21

ENABLE_GLOBAL_CALLBACK Procedure 11-22

DELETE_GLOBAL_CALLBACK Procedure 11-23

XS_ACL Package 11-24

Security Model for the XS_ACL Package 11-24

Constants 11-24

Object Types, Constructor Functions, Synonyms, and Grants 11-25

Summary of XS_ACL Subprograms 11-25

CREATE_ACL Procedure 11-26

APPEND_ACES Procedure 11-27

REMOVE_ACES Procedure 11-28

SET_SECURITY_CLASS Procedure 11-28

SET_PARENT_ACL Procedure 11-29

ADD_ACL_PARAMETER Procedure 11-30

REMOVE_ACL_PARAMETERS Procedure 11-30

xii

SET_DESCRIPTION Procedure 11-31

DELETE_ACL Procedure 11-32

XS_ADMIN_UTIL Package 11-32

Security Model 11-33

Constants 11-33

Object Types, Constructor Functions, Synonyms, and Grants 11-33

Summary of XS_ADMIN_UTIL Subprograms 11-33

GRANT_SYSTEM_PRIVILEGE Procedure 11-33

REVOKE_SYSTEM_PRIVILEGE Procedure 11-34

XS_DATA_SECURITY Package 11-35

Security Model for the XS_DATA_SECURITY Package 11-36

Object Types, Constructor Functions, Synonyms, and Grants 11-36

Summary of XS_DATA_SECURITY Subprograms 11-38

CREATE_POLICY Procedure 11-39

APPEND_REALM_CONSTRAINTS Procedure 11-40

REMOVE_REALM_CONSTRAINTS Procedure 11-40

ADD_COLUMN_CONSTRAINTS Procedure 11-41

REMOVE_COLUMN_CONSTRAINTS Procedure 11-42

CREATE_ACL_PARAMETER Procedure 11-42

DELETE_ACL_PARAMETER Procedure 11-43

SET_DESCRIPTION Procedure 11-44

DELETE_POLICY Procedure 11-45

ENABLE_OBJECT_POLICY Procedure 11-45

DISABLE_OBJECT_POLICY Procedure 11-46

REMOVE_OBJECT_POLICY Procedure 11-47

APPLY_OBJECT_POLICY Procedure 11-48

XS_DATA_SECURITY_UTIL Package 11-49

Security Model 11-49

Constants 11-49

Summary of XS_DATA_SECURITY_UTIL Subprograms 11-50

SCHEDULE_STATIC_ACL_REFRESH Procedure 11-50

ALTER_STATIC_ACL_REFRESH Procedure 11-51

XS_DIAG Package 11-52

Security Model 11-52

Summary of XS_DIAG Subprograms 11-52

VALIDATE_PRINCIPAL Function 11-52

VALIDATE_SECURITY_CLASS Function 11-53

VALIDATE_ACL Function 11-54

VALIDATE_DATA_SECURITY Function 11-55

VALIDATE_NAMESPACE_TEMPLATE Function 11-56

VALIDATE_WORKSPACE Function 11-57

xiii

XS_NAMESPACE Package 11-58

Security Model 11-58

Constants 11-58

Object Types, Constructor Functions, Synonyms, and Grants 11-58

Summary of XS_NAMESPACE Subprograms 11-59

CREATE_TEMPLATE Procedure 11-59

ADD_ATTRIBUTES Procedure 11-60

REMOVE_ATTRIBUTES Procedure 11-61

SET_HANDLER Procedure 11-62

SET_DESCRIPTION Procedure 11-62

DELETE_TEMPLATE Procedure 11-63

XS_PRINCIPAL Package 11-64

Security Model 11-64

Constants 11-64

Object Types, Constructor Functions, Synonyms, and Grants 11-64

Summary of XS_PRINCIPAL Subprograms 11-65

CREATE_USER Procedure 11-66

CREATE_ROLE Procedure 11-68

CREATE_DYNAMIC_ROLE Procedure 11-69

GRANT_ROLES Procedure 11-70

REVOKE_ROLES Procedure 11-71

ADD_PROXY_USER Procedure 11-72

REMOVE_PROXY_USERS Procedure 11-73

ADD_PROXY_TO_DBUSER 11-74

REMOVE_PROXY_FROM_DBUSER Procedure 11-74

SET_EFFECTIVE_DATES Procedure 11-75

SET_DYNAMIC_ROLE_DURATION Procedure 11-76

SET_DYNAMIC_ROLE_SCOPE Procedure 11-76

ENABLE_BY_DEFAULT Procedure 11-77

ENABLE_ROLES_BY_DEFAULT Procedure 11-77

SET_USER_SCHEMA Procedure 11-78

SET_GUID Procedure 11-78

SET_ACL Procedure 11-79

SET_PROFILE Procedure 11-80

SET_USER_STATUS Procedure 11-81

SET_PASSWORD Procedure 11-82

SET_VERIFIER Procedure 11-83

SET_DESCRIPTION Procedure 11-85

DELETE_PRINCIPAL Procedure 11-86

XS_SECURITY_CLASS Package 11-87

Security Model for the XS_SECURITY_CLASS Package 11-87

xiv

Summary of XS_SECURITY_CLASS Subprograms 11-87

CREATE_SECURITY_CLASS Procedure 11-88

ADD_PARENTS Procedure 11-89

REMOVE_PARENTS Procedure 11-89

ADD_PRIVILEGES Procedure 11-90

REMOVE_PRIVILEGES Procedure 11-91

ADD_IMPLIED_PRIVILEGES Procedure 11-92

REMOVE_IMPLIED_PRIVILEGES Procedure 11-92

SET_DESCRIPTION Procedure 11-93

DELETE_SECURITY_CLASS Procedure 11-94

12

Real Application Security HR Demo

Overview of the Security HR Demo 12-1

What Each Script Does 12-2

Setting Up the Security HR Demo Components 12-4

About Creating Roles and Application Users 12-4

About Creating the Security Class and ACLs 12-5

About Creating the Data Security Policy 12-6

About Validating the Real Application Security Objects 12-7

About Setting Up the Mid-Tier Related Configuration 12-7

Running the Security HR Demo Using Direct Logon 12-8

Running the Security HR Demo Attached to a Real Application Security Session 12-10

Running the Security HR Demo Cleanup Script 12-12

Running the Security HR Demo in the Java Interface 12-13

About Using RASADM to Run the Security HR Demo 12-13

About Running the RASADM Application 12-14

Design Phase 12-15

Development Flow 12-15

About Using RASADM to Create the HR Demo 12-16

About Creating Application Roles 12-18

About Creating Application Users 12-19

About Creating the Data Security Policy 12-21

A Predefined Objects in Real Application Security

Users A-1

Roles A-1

Regular Application Roles A-1

Dynamic Application Roles A-2

Database Roles A-2

xv

Namespaces A-3

Security Classes A-3

ACLs A-4

B Configuring OCI and JDBC Applications for Column Authorization

About Using OCI to Retrieve Column Authorization Indicators B-1

Example of Obtaining the Return Code B-1

About Using the Return Code and Indicator with Authorization Indicator B-2

About the Warning for Unknown Authorization Indicator B-3

Using OCI Describe for Column Security B-4

About Using JDBC to Retrieve Column Authorization Indicators B-6

About Checking Security Attributes for a Table Column B-6

About Checking User Authorization for a Table Column B-7

Example of Checking Security Attributes and User Authorization B-8

C Real Application Security HR Demo Files

How to Run the Security HR Demo C-1

Scripts for the Security HR Demo C-1

hrdemo_setup.sql C-1

hrdemo.sql C-5

hrdemo_session.sql C-6

hrdemo.java C-8

hrdemo_clean.sql C-11

Generated Log Files for Each Script C-12

hrdemo_setup.log C-12

hrdemo.log C-19

hrdemo_run_sess.log C-21

hrdemo.log C-24

hrdemo_clean.log C-24

D Troubleshooting Oracle Database Real Application Security

About Real Application Security Diagnostics D-1

About Using Validation APIs D-1

How to Check Which ACLs Are Associated with a Row for the Current User D-2

How to Find If a Privilege Is Granted in an ACL to a User D-2

About Exception State Dumps D-2

About Event-Based Tracing D-3

About In-Memory Tracing D-3

About Statistics D-3

xvi

About Event-Based Tracing of Real Application Security Components D-3

About Application Sessions (XSSESSION) Event-Based Tracing D-4

About Application Principals (XSPRINCIPAL) Event-Based Tracing D-6

About Security Classes (XSSECCLASS) Event-Based Tracing D-7

About ACL (XSACL) Event-Based Tracing D-8

About Data Security (XSXDS and XSVPD) Event-Based Tracing D-8

About Exception State Dump Information D-10

About Session Statistics D-10

Using Middle-Tier Tracing D-10

Glossary

Index

xvii

List of Examples

2-1 Setting the Password Verifier Using the Hash Algorithm XS_SHA512 2-6

2-2 DBA Resets the Password with a Password Change Operation for User lwuser2

When Not Explicitly Attached to a Session 2-8

2-3 User lwuser2 Performs a Self Password Change that Fails When Explicitly Attached

to a Session Because the Session Lacks the ALTER USER Privilege 2-9

2-4 A Self Password Change Succeeds When Explicitly Attached to a Session and User

lwuser2's Session Has the ALTER USER Privilege 2-9

2-5 Configuring a Proxy Application User 2-11

2-6 Creating a Session and Switching an Application User 2-11

2-7 Creating a Regular Application Role 2-14

2-8 Creating a Dynamic Application Role 2-15

2-9 Setting Effective Dates for an Application User 2-16

2-10 Setting Effective Dates for an Application Role of an Application User 2-17

2-11 Creating a New Application User and Granting This User an Application Role 2-17

2-12 Granting an Application Role to an Existing Application User 2-18

2-13 Granting a Regular Application Role to Another Regular Application Role 2-18

2-14 Granting a Database Role to an Application Role 2-19

3-1 Creating an Application Session 3-4

3-2 Creating an Anonymous Application Session 3-4

3-3 Attaching an Application Session 3-6

3-4 Setting a Cookie for an Application Session 3-7

3-5 Assigning an Application User to an Application Session 3-8

3-6 Switching an Application User to Another Application User in the Current Application

Session 3-9

3-7 Registering a Global Callback in an Application Session 3-11

3-8 Saving the Current User Application Session 3-13

3-9 Detaching and Committing an Application Session 3-14

3-10 Detaching and Not Committing an Application Session 3-14

3-11 Destroying an Application Session 3-15

3-12 Creating a Namespace Template 3-17

3-13 Initializing Namespaces When Creating an Application Session 3-19

3-14 Initializing Namespaces When Attaching an Application Session 3-19

3-15 Initializing Namespaces When Assigning an Application User to an Application Session 3-20

3-16 Initializing Namespaces When Switching an Application User in an Application Session 3-21

3-17 Initializing a Namespace Explicitly in an Application Session 3-22

xviii

3-18 Setting a Namespace Attribute for an Application Session 3-23

3-19 Getting a Namespace Attribute for an Application Session 3-24

3-20 Creating a Custom Namespace Attribute for an Application Session 3-25

3-21 Deleting a Namespace in an Application Session 3-26

3-22 Enabling a Role in an Application Session 3-27

3-23 Disabling a Role in an Application Session 3-27

4-1 Adding an Aggregate Privilege to a Security Class 4-2

4-2 Adding Implied Privileges to an Aggregate Privilege 4-3

4-3 Using ALL Grant 4-3

4-4 Showing Security Class Inheritance 4-4

4-5 Adding Parent Security Classes for a Specified Security Class 4-6

4-6 Removing One or More Parent Classes for a Specified Security Class 4-6

4-7 Adding One or More Application Privileges to a Security Class 4-6

4-8 Removing One or More Application Privileges from a Specified Security Class 4-6

4-9 Removing all Application Privileges for a Specified Security Class 4-6

4-10 Adding One or More Implied Application Privileges to an Aggregate Privilege 4-7

4-11 Removing a Specified Implied Application Privileges from an Aggregate Privilege 4-7

4-12 Removing all Implied Application Privileges from an Aggregate Privilege 4-7

4-13 Setting a Description String for a Specified Security Class 4-7

4-14 Deleting a Specified Security Class 4-7

4-15 Creating an Access Control List 4-9

4-16 Denying a Privilege 4-10

4-17 Inverting an Application Privilege 4-10

4-18 Setting ACE Start-Date and End-Date 4-10

4-19 Appending an ACE to an Access Control List 4-11

4-20 Removing all ACEs from an ACL 4-11

4-21 Modifying the Security Class for an ACL 4-11

4-22 Setting or Modifying the Parent ACL 4-11

4-23 Removing all ACL Parameters for an ACL 4-11

4-24 Removing the Specified ACL Parameter for an ACL 4-11

4-25 Setting a Description String for an ACL 4-12

4-26 Deleting an ACL 4-12

4-27 Extending ACL Inheritance 4-14

4-28 Constraining ACL Inheritance: Firewall-Specific Authentication Privilege 4-14

4-29 Using a Constraining Application Privilege 4-15

5-1 Structure of a Data Security Policy 5-4

5-2 Components of a Data Realm Constraint 5-6

xix

5-3 Column with an Additional Application Privilege That Has Been Applied 5-10

5-4 Checking Authorized Data and Masking NULL Values 5-10

5-5 Using XS_DATA_SECURITY.APPLY_OBJECT_POLICY 5-11

5-6 A Master Detail Data Realm 5-13

5-7 How a BEQUEATH CURRENT_USER View Works 5-24

5-8 How a BEQUEATH DEFINER View Works 5-25

5-9 Connecting as User SYS 5-27

5-10 Creating the DB_EMP Role 5-28

5-11 Creating the Application Role EMPLOYEE for Common Employees 5-28

5-12 Creating the Application Role IT_ENGINEER for the IT Department 5-28

5-13 Creating the Application Role HR_REPRESENTATIVE for the HR Department 5-28

5-14 Granting DB_EMP Database Role to Each Application Role 5-28

5-15 Creating Application User DAUSTIN 5-29

5-16 Creating Application User SMAVRIS 5-29

5-17 Granting the HR User the Policy Administration Privilege ADMIN_ANY_SEC_POLICY 5-29

5-18 Creating the HRPRIVS Security Class 5-30

5-19 Creating ACLs: EMP_ACL, IT_ACL, and HR_ACL 5-30

5-20 Creating the EMPLOYEES_DS Data Security Policy 5-31

5-21 Applying the EMPLOYEES_DS Security Policy to the EMPLOYEES Table 5-32

5-22 Validating the Real Application Security Objects 5-32

5-23 Disabling a Data Security Policy for a Table 5-32

6-1 How to Get an Instance of the Session Manager in Java Using a Single Connection 6-2

6-2 How to Create a Real Application Security Session in Java 6-5

6-3 How to Attach a Real Application Security Session in Java 6-5

6-4 How to Attach Using a Cookie 6-6

6-5 How to Assign an Application User to a Session in Java 6-6

6-6 How to Switch an Application User in a Session in Java 6-7

6-7 How to Enable a Real Application Security Application Role in Java 6-7

6-8 How to Disable a Real Application Security Application Role in Java 6-8

6-9 How to Test If a Real Application Security Application Role Is Enabled in Java 6-8

6-10 How to Create a Namespace in Java 6-9

6-11 How to Delete a Namespace in Java 6-9

6-12 How to Implicitly Create the Namespace in Java 6-9

6-13 How to Create a Session Namespace Attribute in Java 6-10

6-14 How to Retrieve a Session Namespace Attribute in Java 6-10

6-15 How to List Attributes in Java 6-10

6-16 How to Reset an Attribute in Java 6-11

xx

6-17 How to Delete an Attribute in Java 6-11

6-18 How to Get the Session ID for the Session in Java 6-12

6-19 How to Get the Secure Session Cookie in Java 6-12

6-20 How to Set the Secure Session Cookie in Java 6-13

6-21 How to Detach a Real Application Security Session in Java 6-13

6-22 How to Destroy a Real Application Security Session in Java 6-13

6-23 How to Authenticate Application Users in Java 6-14

6-24 How to Construct an ACL Identifier 6-15

6-25 How to get an ACL for a Specified Data Privilege 6-15

7-1 Creating a Real Application Security Session for External Users 7-3

7-2 Attaching a Real Application Security Session for External Users 7-6

7-3 How to Assign a Real Application Security Session to External Users 7-8

7-4 How to Save a Real Application Security External User Session 7-9

8-1 Granting the Code-Based Permission CredentialAccessPermission to the xsee.jar File 8-6

8-2 Application Session Filter Sample Configuration 8-8

8-3 Application Session APIs: AttachSession and DetachSession 8-12

8-4 Application Session APIs: DestroySession 8-13

8-5 Privilege Elevation API 8-15

8-6 Namespace APIs 8-19

8-7 CheckPrivilege API 8-20

8-8 Set Up the HR Demo Application for External Principals 8-22

8-9 A Complete Application Session Filter Sample Configuration 8-26

8-10 Sample Servlet Application MyHR.java 8-30

8-11 Filter to Set Up Application Namespace 8-35

8-12 User and Group to Application Roles Mapping 8-38

11-1 Set the ACL Privilege CREATE_SESSION on Application User TEST1 11-80

B-1 Retrieving Return Codes from OCI for a Column Authorization B-2

B-2 Using the OCIDescribeAny Function to Enable an Explicit Describe B-5

B-3 Check Security Attributes and User Authorization B-9

xxi

List of Figures

1-1 Oracle Database Real Application Security Components 1-3

1-2 Three Dimensions of Data Security 1-5

3-1 Real Application Security Architecture 3-2

5-1 Real Application Security Data Security Policy Created on the EMPLOYEES Table 5-3

5-2 Real Application Security Data Security Policy Created on Master-Detail Related Tables 5-16

8-1 Application Session Service in Oracle Fusion Middleware 8-4

xxii

List of Tables

3-1 Session Events That Can Use Callback Event Handlers 3-12

3-2 Session Privilege Checking 3-30

3-3 Session Privilege Operations and the Required Privileges to Perform Them 3-30

8-1 Session Service HR Demo(1) Logged in as Employee LPOPP 8-39

8-2 Session Service HR Demo(2) Logged in as HR Manager HRMGR 8-40

8-3 Session Service HR Demo(3) Logged in as Team Manager AHUNOLD 8-40

9-1 Oracle Database Real Application Security Data Dictionary Views 9-1

10-1 Oracle Database Real Application Security SQL Functions and Procedures 10-1

10-2 Predefined Parameters 10-2

11-1 Oracle Database Real Application Security PL/SQL Packages 11-1

11-2 Summary of DBMS_XS_SESSIONS Subprograms 11-3

11-3 Summary of XS_ACL Subprograms 11-25

11-4 Summary of XS_ADMIN_UTIL Subprograms 11-33

11-5 Summary of XS_DATA_SECURITY Subprograms 11-38

11-6 Summary of XS_DATA_SECURITY Subprograms for Managing Data Security

Policies on Tables or Views 11-38

11-7 Summary of XS_DATA_SECURITY_UTIL Subprograms 11-50

11-8 Summary of XS_DIAG Subprograms 11-52

11-9 Summary of XS_NAMESPACE Subprograms 11-59

11-10 Summary of XS_PRINCIPAL Subprograms 11-65

11-11 Summary of XS_SECURITY_CLASS Subprograms 11-87

B-1 Authorization Indicator Behavior (By Default) B-3

B-2 Authorization Indicator Behavior (By Default) - OCI_ATTR_NO_AUTH_WARNING=TRUE B-4

C-1 HR Demo Scripts and Log Files C-1

D-1 Summary of XS_DIAG Subprograms D-2

D-2 Real Application Security Components and Events D-3

D-3 XSSESSION Trace Contents D-5

D-4 XSPRINCIPAL Trace Contents D-7

D-5 XSACL Trace Contents D-8

D-6 XSXDS Trace Contents D-9

D-7 XSVPD Trace Contents D-9

D-8 Real Application Security Components and First-Failure Dump Information D-10

D-9 Real Application Security Components and Performance Statistics D-10

xxiii

Preface

Welcome to Oracle Database Real Application Security Administrator's and
Developer's Guide. This guide describes how you may configure Oracle Database
Real Application Security.

Audience
This guide is intended for database administrators (DBAs), security administrators,
application developers, and others tasked with configuring Oracle Database Real
Application Security in an Oracle database.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• Oracle Database Real Application Security Java API Reference

• Oracle Database Real Application Security Session Service Java API Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Preface

xxiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxv

Changes in This Release for Oracle
Database Real Application Security
Administrator's and Developer's Guide

This preface contains:

• Changes in Oracle Database Release 19c Version 19.1

• Changes in Oracle Database Release 18c Version 18.1

• Changes in Oracle Database 12c Release 2 (12.2.0.1)

Changes in Oracle Database Release 19c Version 19.1
The following are changes in Oracle Database Real Application Security
Administrator's and Developer's Guide for Oracle Database release 19c, version 19.1:

• New Features

• Deprecated Features

New Features
There are no new features for this release.

Deprecated Features
There are no deprecated features for this release.

Changes in Oracle Database Release 18c Version 18.1
The following are changes in Oracle Database Real Application Security
Administrator's and Developer's Guide for Oracle Database release 18c, version 18.1:

• New Features

• Deprecated Features

New Features
There are no new features for this release.

Deprecated Features
There are no deprecated features for this release.

Changes in This Release for Oracle Database Real Application Security Administrator's and Developer's Guide

xxvi

Changes in Oracle Database 12c Release 2 (12.2.0.1)
The following are changes in Oracle Database Real Application Security
Administrator's and Developer's Guide for Oracle Database 12c Release 2 (12.2.0.1):

• New Features

• Deprecated Features

New Features
The following features are new in this release:

• Real Application Security includes support for privilege scoping

Oracle Database 12c Release 2 (12.2) extends the Real Application Security
model by allowing per principal session privilege grants, through an ACL set on
the principal as a native Real Application Security application user, for granting
session management privileges. In addition, Oracle Database 12c Release 2
(12.2) extends the Real Application Security model by allowing per principal
session privilege grants, though an ACL set on the principal as a dynamic role, for
granting only the SET_DYNAMIC_ROLES privilege. Principal-specific ACL grants take
precedence over system-level session privilege grants. It allows for a negative
grant to be set on the principal specific ACL. Use of an ACL allows a common set
of grants to be enforced on a group of native application users and dynamic roles.

This feature provides the following new API:

– SET_ACL Procedure— Sets an ACL on the specified application user or
dynamic role.

This feature enhances the following APIs with the addition of the acl parameter:

– CREATE_USER Procedure

– CREATE_DYNAMIC_ROLE Procedure

This feature enhances the following views by displaying the ACLs that are set on
the user and or dynamic role or both:

– DBA_XS_USERS

– DBA_XS_DYNAMIC_ROLES

This feature adds the SET_DYNAMIC_ROLES privilege, which is defined in the
SESSION_SC security class to protect enablement and disablement of a dynamic
role as part of the attach session and assign user operations.

See SET_ACL Procedure, CREATE_USER Procedure,
CREATE_DYNAMIC_ROLE Procedure, DBA_XS_USERS,
DBA_XS_DYNAMIC_ROLES, and the SESSION_SC security class in Security
Classes for more information.

See About Real Application Security Session Privilege Scoping Through ACL for
more information.

• Real Application Security supports column-level access control on DML
statements. This allows users to insert, update, and delete specific column values
based on their granted column-level privileges.

Changes in This Release for Oracle Database Real Application Security Administrator's and Developer's Guide

xxvii

Beginning with Oracle Database 12c Release 2 (12.2), users with required
privileges can do DMLs with Data Security column security. This means:

– To update a row value, an authorized user needs both the row-level UPDATE
privilege as well as the column privilege on the protected columns to be
updated.

– To insert a row, an authorized user needs both the row-level INSERT privilege
as well as the column privilege on each protected column. If the INSERT
statement does not insert a value for a protected column, the column privilege
is not required, and the default value (or NULL if there is no default value) is
inserted.

– To delete a row, an authorized user only needs the row-level DELETE privilege.
The column privilege is not required.

– No data is disclosed for DMLs with Data Security row-level and column-level
security. DML statements with RETURNING INTO or with the parameter -
sql92_security enabled require both the row-level SELECT privilege as well as
the column privileges if the columns appear in the RETURNING INTO clause.

• Real Application Security includes support for schema-level security policy
administration

This feature enhances the following APIs:

– GRANT_SYSTEM_PRIVILEGE Procedure by adding the schema parameter

– REVOKE_SYSTEM_PRIVILEGE Procedure by adding the schema parameter

This feature extends the ADMIN_SEC_POLICY privilege to schemas for policy
management.

See XS_ACL Package, XS_DATA_SECURITY Package, and
XS_SECURITY_CLASS Package for more information.

This feature adds the APPLY_SEC_POLICY privilege for policy enforcement within
granted schemas to achieve policy enforcement within an application.

The APPLY_SEC_POLICY privilege will be checked in the following APIs before
enforcing policies: APPLY_OBJECT_POLICY Procedure,
REMOVE_OBJECT_POLICY Procedure, ENABLE_OBJECT_POLICY Procedure,
and DISABLE_OBJECT_POLICY Procedure.

This feature adds two audit actions:

– AUDIT_GRANT_PRIVILEGE

— to audit the GRANT_SYSTEM_PRIVILEGE API

– AUDIT_REVOKE_PRIVILEGE

— to audit the REVOKE_SYSTEM_PRIVILEGE API

This feature adds the following views: ALL_XS_SECURITY_CLASSES,
ALL_XS_SECURITY_CLASS_DEP, ALL_XS_PRIVILEGES,
ALL_XS_IMPLIED_PRIVILEGES, ALL_XS_ACLS, ALL_XS_ACES,
ALL_XS_POLICIES, ALL_XS_REALM_CONSTRAINTS,
ALL_XS_INHERITED_REALMS, ALL_XS_ACL_PARAMETERS,
ALL_XS_COLUMN_CONSTRAINTS, ALL_XS_APPLIED_POLICIES, and
DBA_XS_PRIVILEGE_GRANTS.

See About Schema Level Real Application Security Policy Administration for more
information.

Changes in This Release for Oracle Database Real Application Security Administrator's and Developer's Guide

xxviii

• Oracle Label Security support for the Oracle Database Real Application Security

For the user_name parameter in the SA_USER_ADMIN.SET_USER_LABELS procedure
and in the SA_USER_ADMIN.SET_USER_PRIVS procedure for Oracle Database, the
user name can be an Oracle Database Real Application Security user name.

See the SA_USER_ADMIN.SET_USER_LABELS procedure in Oracle Label Security
Administrator’s Guide and the SA_USER_ADMIN.SET_USER_PRIVS procedure in
Oracle Label Security Administrator’s Guide for more information.

Labels or Oracle Label Security privileges assigned to the Real Application
Security user are enforced in the Real Application Security user session. Oracle
Label Security context is established upon the following Real Application Security
session operations (ATTACH_SESSION, SWITCH_USER, ASSIGN_USER) and in Real
Application Security direct logon sessions. Based on labels or privileges or both
that the current Real Application Security session has, the Oracle Label Security
policy is enforced.

See Attaching an Application Session to a Traditional Database Session,
Assigning an Application User to an Anonymous Application Session, Switching a
Current Application User to Another Application User in the Current Application
Session, and Oracle Label Security Context Is Established in Direct Logon
Session for more information.

• Predefined application role XSCONNECT
Allows the user granted this role to connect to the database. In other words, a user
not granted this predefined role cannot connect to the database.

See Regular Application Roles , GRANT_ROLES Procedure, and About Creating
a Direct Login Application User Account for more information.

Deprecated Features
The following features are deprecated and will not be supported in future releases:

• For the CREATE_USER procedure

The PASSWORDEXPIRED and LOCKED values for the parameter STATUS are
deprecated.

See "CREATE_USER Procedure" for more information.

• For the SET_USER_STATUS procedure

The PASSWORDEXPIRED status value is deprecated.

See "SET_USER_STATUS Procedure" for more information.

• For the SET_PASSWORD procedure

The password types XS_MD4 and XS_O3LOGON are deprecated.

See "SET_PASSWORD Procedure" for more information.

• For the SET_VERIFIER procedure

The verifier types XS_SALTED_MD5, XS_SHA1, XS_SASL_MD5, XS_MD5, XS_MD4, and
XS_O3LOGON are deprecated.

See "SET_VERIFIER Procedure" for more information.

Changes in This Release for Oracle Database Real Application Security Administrator's and Developer's Guide

xxix

1
Introducing Oracle Database Real
Application Security

This chapter contains:

• What Is Oracle Database Real Application Security?

• Data Security Concepts Used in Real Application Security

• Application Session Concepts Used in Application Security

• Flow of Design and Development

• Scenario: Security Human Resources (HR) Demonstration of Employee
Information

• About Auditing in an Oracle Database Real Application Security Environment

• Support for Pluggable Databases

What Is Oracle Database Real Application Security?
Oracle Database Real Application Security is a database authorization model that:

• Supports declarative security policies

• Enables end-to-end security for multitier applications

• Provides an integrated solution to secure database and application resources

• Advances the security architecture of Oracle Database to meet existing and
emerging demands of applications developed for the Internet

Traditional security was designed for client/server systems. These systems had a
significantly smaller number of users than newer applications designed for the Internet.
When application developers found traditional security inadequate, they often moved it
from the database layer to the application layer. To accomplish this, developers
frequently built their own tables and defined their own application users. Because
security was encoded in the application layer, rather than in the database, application
users and application roles were typically known only to the application. In other
words, database users were not application-level users, hence the user identity was
not known during the access control decision in the database. Furthermore, database
operations were limited to DDLs and DMLs that do not represent application-level
tasks or operations, hence the operation context was also not known during the
access control decision in the database. These practices exposed the database to
vulnerability.

Real Application Security is designed to:

• Manage application security for application users rather than database users

• Enable developers to manage security for application level tasks

• Enable application user identity to be known during security enforcement

1-1

• Enable developers to return security to the database layer, either incrementally, or
all at once

This section discusses traditional security and Real Application Security, indicating
how Real Application Security improves upon traditional security.

This section describes these concepts:

• Disadvantages of Traditional Security for Managing Application Users

• Advantages of Real Application Security

• Architecture of Real Application Security

Disadvantages of Traditional Security for Managing Application Users
Using the traditional security model, it was often difficult to manage three-tier
applications, especially when performing these security tasks:

• Extending security policies independent of application code

• Enforcing security policies at the database level, where the application user is
unknown

• Enforcing least privilege principle as full access is granted to highly privileged two-
tier components

Advantages of Real Application Security
Real Application Security enables these security tasks, which improve database
security and performance:

• Three-tier and two-tier applications can declaratively define, provide, and enforce
access control requirements at the database layer.

• The database can provide a uniform security model across all tiers and support
multiple application user stores, including the associated roles, authentication
credentials, database attributes, and application-defined attributes. This model
enables application users to have a single unique global identity across an Oracle
enterprise.

• An Oracle database can natively support the application security context. The
database supports integrated policy specification and enforcement for both the
application and the database, so the application does not need to do this through
application code. Because the database stores the application security context
information, this also reduces network traffic.

• Developers can use Real Application Security to control application user access to
data in an Oracle database throughout all components of an Oracle enterprise in a
common manner.

See Configuring Data Security for more information about defining data security
policies and access control requirements.

Architecture of Real Application Security
Real Application Security is managed through a collection of PL/SQL and Java APIs.
This architecture that enables you to configure its components—application users,
application roles, sessions, and other security-related components. With Real

Chapter 1
What Is Oracle Database Real Application Security?

1-2

Application Security, you configure application counterparts to the traditional user, role,
and session, through the use of entities, which are stored in tables.

Figure 1-1 shows the various components used in Oracle Database Real Application
Security. This includes application users, application roles, access control lists,
security classes, and application sessions. These components are discussed in the
following sections. Figure 1-1 also shows Web applications establishing application
sessions to the database.

Figure 1-1 Oracle Database Real Application Security Components

Oracle Database

Real Application Security

Web
Clients

Application Server

Application
Session Cache

ACL
Cache

Connection Pool

DB Session
1

DB Session
2

DB Session
3

Attached

ACLs, Application Privileges, Users, Roles

Real Application Security

Application Sessions

Attached

DB Session
1

DB Session
2

DB Session
3

DB Session
4

SQL*Plus

Data Security Concepts Used in Real Application Security
This section describes access control terms and concepts that you need to understand
before you can begin to configure Real Application Security. Using the PL/SQL
administrative interfaces, you can create and manage the entities described here:

Chapter 1
Data Security Concepts Used in Real Application Security

1-3

application user, application role, principal, application privilege, security class, access
control list (ACL), access control entry (ACE), and data realm.

Note:

When a term such as application user or application role is used here, it
applies to Real Application Security; when it is important to distinguish the
database type, either no qualifier is used or the qualifier database is used.

See Also:

• Configuring Application Users and Application Roles

• Configuring Application Privileges and Access Control Lists

This section contains:

• About Data Security with Oracle Database Real Application Security

• Principals: Users and Roles

• Application Privileges

• Security Classes in Oracle Database Real Application Security

• Access Control Entry (ACE)

• Access Control List (ACL)

• Data Security Policy

About Data Security with Oracle Database Real Application Security
Effective security requires defining which application users, applications, or functions
can have access to which data, to perform which kinds of operations. Thus, effective
security has these three dimensions:

1. which application users

2. can perform which operations

3. on which data

You define (1) principals, (2) application privileges, and (3) objects in relation to these
three dimensions, respectively. Principals are users and roles. A role can represent
attributes of an application user, system state, or a piece of code.

Principals and application privileges are related in a declarative way by defining ACLs.
These ACLs are then related to the data by defining Data Security policy that protects
rows and columns of table data. For example, you can protect table data by using
PL/SQL procedures to set controlling ACLs.

Figure 1-2 illustrates an example where the user, ProjectManager has the
ModifyProject privilege on a data realm comprised of Team A's projects.

Chapter 1
Data Security Concepts Used in Real Application Security

1-4

Figure 1-2 Three Dimensions of Data Security

Principals: Users and Roles
When discussing fine-grained database access control, a principal is an application
user or an application role or a database user or a database role. An application user
can be a person or an autonomous application process that accesses information in
the database. An application role is a logical grouping of application privileges
required to accomplish a real life task. An application role can contain other application
roles, but this recursion cannot be circular. You use application roles to associate
application users, both database users and application users with privileges.

Oracle Database supports the following as principals:

• Database users and database roles

A database user is also sometimes referred to as a database schema or a user
account. When a person or application logs onto the database, it uses a database
user (schema) and password.

A database role corresponds to a set of database privileges that can be granted to
database users, applications, or other database roles — see "Understanding the
Difference Between Database Roles and Application Roles".

• Application users and Application roles

The term application, as used by Real Application Security, refers to the creation
of an application user, application role, or session that contains only information
pertinent to the application that the application user is logging onto. Application
users and application roles are defined by an application, and they do not need to
be tied to any database schema.

Application users can also create heavyweight database sessions by connecting
to the database directly. These are called direct login application users. See
"About Creating a Direct Login Application User Account". When an application
user creates a heavyweight database session, the user's default schema is set to
a preconfigured value meant solely for name resolution purposes, such as HR.

Chapter 1
Data Security Concepts Used in Real Application Security

1-5

An application role can only be granted to an application user or to another
application role. You cannot directly grant database privileges to application users
and application roles. See "Granting Database Privileges to Application Users and
Application Roles" for further details.

See Also:

– "About Configuring Application Users"

– "About Configuring Application Roles"

This section includes the following sections:

• Understanding the Difference Between Database Users and Application Users

• Understanding the Difference Between Database Roles and Application Roles

• Granting Database Privileges to Application Users and Application Roles

Understanding the Difference Between Database Users and Application Users
Database users are also referred to as traditional users, and have these
characteristics:

• They are associated with schemas and passwords.

• They can create heavyweight sessions to schemas with which they are
associated.

Application users are defined by an application, and have these characteristics:

• They do not own database schemas.

• They can create application sessions to the database through the middle tier.

• They can create heavyweight database sessions by connecting to the database
directly. (See "About Creating a Direct Login Application User Account".)

Note:

In a heavyweight session, the user is associated with a default schema.

Understanding the Difference Between Database Roles and Application Roles
A database role is traditionally thought of as a named set of database privileges.

Database roles have these characteristics:

• They are granted privileges, just as database users can be granted privileges.

• They serve as intermediaries for mapping database privileges to database users
(and applications) as follows: a role is granted privileges, and the role is then
granted to users (giving them the privileges).

1. Grant privileges to database role

Chapter 1
Data Security Concepts Used in Real Application Security

1-6

2. Grant database role to database user

The database user now has the privileges of the database role.

Note:

In traditional database terminology, a role is considered to be the same thing
as the set of privileges that are granted to it.

An application role can be regarded as the set of application-defined privileges that are
associated with it using the mechanism of a declarative access control list (ACL),
discussed in "Access Control List (ACL)".

Application roles have these characteristics:

• They use an access control list (ACL), rather than a database grant, as the
intermediary that maps application privileges to users or roles.

• They can be only granted to application users or application roles.

• They cannot be granted to a database role, unlike a database role can be granted
to an application role.

Note:

In access control terminology, application roles are classified with application
users as principals.

Granting Database Privileges to Application Users and Application Roles
You cannot grant database privileges directly to application users and application
roles. Instead, you grant the database privileges to a database role, and then grant the
database role to the application role in these steps.

1. Grant database privileges to database role.

2. Grant database role to the application role.

The statements in the following code do exactly this, effectively granting the database
SELECT privilege to the application role, HRREP.

CREATE ROLE db_hrrep;
GRANT SELECT ON hr.employees TO db_hrrep;
GRANT db_hrrep TO HRREP;

Application users already created or subsequently created, with that application role,
acquire this application privilege.

Application Privileges
An application privilege is a particular right or permission that can be granted or
denied to a principal. Application developers define application privileges in a security
class.

Chapter 1
Data Security Concepts Used in Real Application Security

1-7

The set of application privileges granted to a principal controls whether or not this
principal can perform a given operation on the data that it protects. For example, if the
principal (database user) HR wants to perform the SELECT operation on a given
resource, then SELECT privileges must be granted to principal HR before the SELECT
operation.

Application privileges can also be aggregated. An aggregate privilege is an
application privilege that implies other application privileges. These implied privileges
can be any application privileges defined by the current security class or an inherited
privilege. When an aggregate privilege is granted or denied, its implied application
privileges are implicitly granted or denied.

Aggregate privileges simplify usability when the number of application privileges
grows. For example, instead of granting each application privilege separately, you can
group related application privileges into an aggregate privilege. Then, you can use a
single grant to enable a principal to access all the application privileges contained in
the aggregate privilege.

Security Classes in Oracle Database Real Application Security
A security class is a scope for a set of application privileges.

A security class includes application privileges that it inherits from other security
classes, and it can include application privileges that it defines.

A security class is typically associated with an access control list (ACL), and the ACL
can grant application privileges in the security class to specific principals. See "Access
Control List (ACL)".

Example 4-4 shows how to create a security class policy.

Access Control Entry (ACE)
An access control entry (ACE) either grants or denies application privileges to a
particular principal (application user or application role).

An ACE is an element in an array named ace_list. The whole array is called by and
becomes part of the access control list (ACL).

The ACE does not, itself, specify which data to protect; that is done by associating the
ACL with target data, such as a set of rows in an order entry table. You can make this
association by creating a data realm to restrict the user to modifying only those rows,
or by using the PL/SQL procedure XS_DATA_SECURITY.SET_ACLS.

Access Control List (ACL)
An access control list (ACL) is a list of access control entries (ACEs), which permit
or deny application privileges to one or more principals.

If the ACL you create relies on a set of custom application privileges that you define in
your own security class, then you must explicitly associate that security class with the
ACL. See Example 4-15 for an example.

If the only application privileges used in the ACL are defined in the DML security class,
then no security class association is needed as that is the default. See a description in
"DML Security Class".

Chapter 1
Data Security Concepts Used in Real Application Security

1-8

Data Security Policy
To protect data within a database table, you must create a data security policy.
Database records, both at row and column level, can be protected using the fine-
grained access control described in this section.

The data security policy performs the following functions:

• Specifies the data that you want to protect. The data can be indicated by a WHERE
clause in a data realm of one or more rows that you design. It can also be defined
using named notation by using an association operator to associate the parameter
to the left of the arrow (=>) with the actual parameter to the right of the arrow. For
example, in Example 5-20, each realm is defined using association operators.

The data security policy can contain one or more data realms.

• Associates each data realm with one or more access control lists (ACLs) that
specify the application privileges required to access rows and columns of the data
realm to form what is called a data realm constraint. A given ACL protects a given
data realm and controls access to particular application users or application roles
(called principals). (See "Access Control List (ACL)" for more information about
ACLs.)

• Optionally applies additional application privileges to protect a particular column to
form what is known as column constraints. This is useful in cases where you need
to add an extra layer of security for sensitive data.

• Associates additional custom application privileges. For example, an administrator
could create an APPROVE_TRANSACTION privilege, which controls whether a user can
take a particular action on the row. Assuming SELECT privilege is granted to all
users, all users could see the row, but only some users can perform the
transaction approval action.

In summary, the application user who logs in will only be allowed to perform operations
including DML on records within the data realm, including individual rows of data,
based on the application privileges in its associated ACLs. Thus, the data security
policy is composed of data realm constraints and column constraints that protect the
data realm by only allowing access to application users who have application
privileges in the associated ACLs.

For example, suppose you have a sales table that lists all sales representatives, their
regions, the products they are responsible for, product categories, and product prices.
When individual sales representatives log on, each representative would see selected
data for all other sales representatives, such as sales representatives for particular
product categories based on data realm constraints. If you wanted to restrict the
display of product prices to sales representatives by region, you could apply additional
application privileges to the column listing product prices, in this case using column
constraints.

Configuring Data Security describes in detail how to protect database objects.

Application Session Concepts Used in Application Security
Real Application Security introduces the concept of an application session. Within the
context of application sessions, there are three types of user identities:

• Application session user: The user associated with the application session.

Chapter 1
Application Session Concepts Used in Application Security

1-9

Application session access to database objects is checked against the
permissions granted to this user.

• Traditional (heavyweight) session user: The user that established the database
session.

This user can be an application user or a database user, as long as database
authentication credentials are available.

• Schema owner: The database schema is the schema associated with the
traditional database session and is only used for object name resolution.

Traditional database user sessions have these characteristics:

• They hold their own database resources, such as transactions and cursors.

• They consume many server resources.

Application sessions have these characteristics:

• They contain information that is pertinent only to the application.

• They can be dedicated to each end application user.

• They can persist until the application user logs out of the application or the
application terminates unexpectedly.

See Configuring Application Sessions for more information about application sessions.

Flow of Design and Development
You should be familiar with the concepts introduced in this chapter to take full
advantage of Real Application Security.

In general, identify all tasks an application performs that require application privileges
to control data access. Then, add the appropriate application privileges to a security
class so that you can reference them in an ACL and grant them to the application
users and application roles. This process involves these tasks:

• Create a default set of meaningful application roles based on the features the
application provides.

• Identify the tables that require data security protection based on the application
table design and security requirements, and define the data realms, including
column protection.

• Define data security policies based on the application requirements and the rules
applied on the tables.

• Ensure that ACLs used in the data security policy and functional security grant the
appropriate application privileges to application roles.

This section contains:

• Design Phase

• Development Flow Steps

Design Phase
In the design phase, you identify all the tasks an application performs that require
application privileges to control data access.

Chapter 1
Flow of Design and Development

1-10

For example, during the design phase, the application policy designer must identify:

1. The set of application-level operations that require access control.

2. The rows and columns of tables and views that can be accessed as part of the
application-level operations.

3. The set of actors or principals (users and roles) that can perform these operations.

4. The runtime application session attributes that identity rows of a table or views.
These attribute names are used within the predicates that selects the rows to be
authorized, and their values are set during the execution of the application.

Development Flow Steps
In the development phase, as the Real Application Security administrator, you use
Real Application Security components to develop your data security policies.

Follow these steps to develop your data security policies:

1. Create the corresponding application users and roles. If using an external directory
server, create the application users and roles or user groups in the directory
server. Follow this procedure to create these principals natively in the database:

a. Create the application roles and grant application roles to application roles, if
needed. See About Configuring Application Roles.

b. Create the application users and grant application roles to the application
users. See About Configuring Application Users.

c. For configuring the directory server to fetch the users and role, when principals
from external stores are used, see the RASADM configuration information in
Oracle Database Real Application Security Administration.

d. For users and roles in the external Directory Server, see manage parameter
settings for using RASADM with a Directory Serve in Oracle Database Real
Application Security Administration.

2. Create each privilege class that you plan to use to develop the security policies for
your application. Each privilege class consists of one or more appropriate
privileges that you define and can reference in an ACL and also grant them to the
application users and application roles. Each privilege class authorizes by means
of ACLs the required application-level operations of a data security policy. See
About Configuring Security Classes and About Configuring Access Control Lists.

3. Create one or more session namespaces that can be used across different
application sessions. This consists of defining for a session namespace its set of
properties (application attributes) and its associated access control policy or ACL
that you can choose from a list or create. See About Manipulating the Application
Session State.

4. Create the data security policy by associating each data realm with an ACL, so as
to create both data realm authorization and column authorization as needed. See
About Data Security.

This process consists of four parts:

a. Policy Information - You choose the object to be protected and the privilege
class to protect it as well as specify the policy name and select the policy
owner. See Understanding the Structure of the Data Security Policy.

Chapter 1
Flow of Design and Development

1-11

b. Column Level Authorization - You choose the name of the column to be
protected and select the privilege to be granted to access the column, which is
associated with the privilege class you selected in Step 3a. See Applying
Additional Application Privileges to a Column.

c. Data Realm Authorization - You create a SQL predicate to represent the data
realm to be protected and add each to a data realm grant list. Then you
choose or create the ACL to protect the data realm. Next, create privilege
grants to be added to a privilege grants list consisting of each principal and
whether it is allowed authorization or denied authorization by selecting the
appropriate privilege. See About Designing Data Realms.

d. Apply Policy - You can apply, remove, enable, or disable the data security
policy you are creating and choose to specify certain apply options, allowing
the owner of the table or view to bypass this data security policy, and whether
to enforce statement types for this policy. See About Enabling Data Security
Policy for a Database Table or View.

See Also:

Scenario: Security Human Resources (HR) Demonstration of Employee Information
that describes in detail how the development flow is implemented for an example
policy scenario for the security human resources (HR) demonstration of employee
information using the concepts and components of Real Application Security.

Scenario: Security Human Resources (HR) Demonstration
of Employee Information

This section presents an example policy that provides a high-level overview of Real
Application Security. It is a simple scenario aimed at explaining the basic Real
Application Security concepts. You should be familiar with the following concepts,
introduced in "Data Security Concepts Used in Real Application Security":

• Principals – application users and application roles

• Security classes and application privileges

• Access control lists and entries (ACLs and ACEs)

• Data security policy

This same scenario appears throughout the book, to illustrate different components of
Real Application Security. It is also described in detail in Real Application Security HR
Demo and Real Application Security HR Demo Files to demonstrate how to use
advanced concepts of Real Application Security to handle a more complex policy.

This section includes the following topics:

• Basic Security HR Demo Scenario: Description and Security Requirements

• Basic HR Scenario: Implementation Overview

Chapter 1
Scenario: Security Human Resources (HR) Demonstration of Employee Information

1-12

Basic Security HR Demo Scenario: Description and Security
Requirements

Susan Mavris (SMAVRIS) is an employee in the Human Resources department. Her job
title is Human Resources Representative. In this capacity, she is in charge of
managing the human resources information for all employees, including department 60
(IT). She can view and update all the employee records, including the SALARY column.

David Austin (DAUSTIN) is an employee in the IT department. His job title is Assistant
Department Manager. In this capacity, he can view employee records in the IT
department, but he cannot view the SALARY column, except for his own salary record.

Secure authorization requires defining which application users and application roles
can have access to which data, to perform which kinds of operations. These three
security dimensions must be defined: protected data, principals, and application
privileges. (see "About Data Security with Oracle Database Real Application
Security").

In this basic scenario:

• The data to be protected is employee information and it is protected in three ways:

– Access to an employee's own record, including the SALARY column.

– Access to all the records in the IT department, excluding the SALARY column.

– Access to all employee records, including the SALARY column.

• Users are allowed access to employee data in the following ways:

– Each user can view their own record, including the SALARY column.

– Application user DAUSTIN in his role as Assistant Department Manager is
allowed to view all the records in the IT department, excluding the SALARY
column.

– Application user SMAVRIS in her role as human-resources representative is
allowed to view and update all employee records, including the SALARY
column.

• Database role DB_EMP is created and granted SELECT, INSERT, UPDATE, and DELETE
privileges on HR.EMPLOYEES.

• Application roles are created as follows:

– EMPLOYEE role is granted to both application users DAUSTIN and SMAVRIS.
Database role DB_EMP is granted to EMPLOYEE role.

– IT_ENGINEER role is granted to only application user DAUSTIN. Database role
DB_EMP is granted to IT_ENGINEER role.

– HR_REPRESENTATIVE role is granted to only application user SMAVRIS. Database
role DB_EMP is granted to HR_REPRESENTATIVE role.

• The VIEW_SALARY application privilege is created to control access to the SALARY
column. The HR_PRIVILEGES security class is created in which to scope the
VIEW_SALARY application privilege.

• ACLs are created to define the degree of access to employee records in the
following ways:

Chapter 1
Scenario: Security Human Resources (HR) Demonstration of Employee Information

1-13

– EMP_ACL grants the EMPLOYEE role the SELECT database privilege and
VIEW_SALARY application privilege to view an employee's own record, including
the SALARY column.

– IT_ACL grants the IT_ENGINEER role only the SELECT database privilege to view
the employee records in the IT department, but it does not grant the
VIEW_SALARY privilege that is required for access to the SALARY column.

– HR_ACL grants the HR_REPRESENTATIVE role SELECT, INSERT, UPDATE, and
DELETE database privileges to view and update all employee's records, and
granting the VIEW_SALARY application privilege to view the SALARY column.

• The HR demo secures the HR.EMPLOYEE table by creating and applying the data
security policy, EMPLOYEES_DS, that has the following three data realms and column
constraint:

– An employee's own record realm. The ACL, EMP_ACL controls this realm, which
grants application role EMPLOYEE privileges to access the realm, including the
SALARY column.

– All the records in the IT department realm. The ACL, IT_ACL controls this
realm, which grants application role IT_ENGINEER privileges to access the
realm, but excluding the SALARY column.

– All the employee records realm. The ACL, HR_ACL controls this realm, which
grants application role HR_REPRESENTATIVE privileges to access the realm,
including the SALARY column.

– A column constraint that protects the SALARY column by requiring the
VIEW_SALARY privilege to view its sensitive data.

Basic HR Scenario: Implementation Overview
To implement the basic human-resources security scenario, in addition to identifying
the protected data, the principals, and the application privileges, you must define the
following:

• A database user as the Real Application Security Administrator and then connect
as the Real Application Security Administrator to create the components.

• How the principals connect with the database to access the data.

• The access control lists (ACLs) that grant the application privilege and any
database privileges to the principals.

• A data security policy that associates the ACLs with the particular data (rows) that
the principals need to access.

In this basic scenario, application users SMAVRIS and DAUSTIN connect to the database
directly as the principals.

The application user account that is created for application users SMAVRIS and DAUSTIN
are principals in this scenario. Each application user account is granted application
roles that, ultimately, has the SELECT privilege on the database table that contains the
employee information. The application role is a principal in this scenario.

A database role, DB_EMP serves as intermediary between the application role and the
database privilege because database privileges can be granted only to database users
and roles. That is, the necessary database privileges are granted to a database role,
and that role is granted to each application role (the principal).

Chapter 1
Scenario: Security Human Resources (HR) Demonstration of Employee Information

1-14

The database SELECT privilege applies to the entire table. The principal must also be
granted an Real Application Security application privilege such as the DML SELECT
privilege, which can be restricted to certain rows of the database table. This restriction
is implemented using an access control list (ACL) and a data security policy.

The HR scenario requires the following components for the security model:

• Protected data: Employee information is stored in the table EMPLOYEES of the
sample database schema HR (delivered with Oracle Database).

• Application role: Application roles, EMPLOYEE, IT_ENGINEER, and
HR_REPRESENTATIVE are created for performing tasks. The application roles are
defined with the XS_PRINCIPAL.CREATE_ROLE procedure.

• Application user: Application users, SMAVRIS and DAUSTIN, are created and
defined. SMAVRIS is granted the application roles EMPLOYEE and
HR_REPRESENTATIVE. DAUSTIN is granted the application roles EMPLOYEE and
IT_ENGINEER.

• Database access: Application users SMAVRIS and DAUSTIN are given a database
password for direct database login. In order to grant SELECT, INSERT, UPDATE, and
DELETE privileges on table EMPLOYEES to application roles EMPLOYEE, IT_ENGINEER,
HR_REPRESENTATIVE a database role, DB_EMP, is created and granted these
database privileges. The application roles are then granted this database role.

• Application Privilege: A single security class, HR_PRIVILEGES, is created which
defines a single custom application privilege, VIEW_SALARY. Through inheritance,
the predefined application privilege SELECT is also available in this security class.
These application privileges will be used in connection with a data security policy
to allow read access to employee information. The security class is created by the
XS.SECURITY_CLASS.CREATE_SECURITY_CLASS procedure.

• ACL: The SELECT and VIEW_SALARY privileges are granted to application role
EMPLOYEE by the access control list (ACL), EMP_ACL that is created by
XS_ACL.CREATE_ACL procedure. The SELECT privilege is granted to application role
IT_ENGINEER by the ACL, IT_ACL that is created by XS_ACL.CREATE_ACL procedure.
The SELECT, INSERT, UPDATE, and DELETE privileges are granted to application role
HR_REPRESENTATIVE by the ACL, HR_ACL that is created by XS_ACL.CREATE_ACL
procedure to view and update all employee's records, and granting the
VIEW_SALARY application privilege to view the SALARY column. .

• Data Security Policy: The data security policy is defined and created with the
XS_DATA_SECURITY.CREATE_POLICY procedure. This data security policy defines
three data realms (an employee's own record realm that can view the realm
including the SALARY column, all the records in the IT department realm that can
view the IT department excluding the SALARY column, and all the employee
records realm that can view the realm including the SALARY column) and a column
constraint. The data security policy associates the ACLs EMP_ACL, IT_ACL, and
HR_ACL with its respective data realm.

Introducing this example in this chapter provides an overview of the requirements for
implementing a policy using Real Application Security. Actual implementation of these
tasks requires a systematic understanding of all the Real Application Security
concepts introduced in this chapter, and further discussed in subsequent chapters.
The complete example, including implementation details, appears in "Real Application
Security: Putting It All Together".

Chapter 1
Scenario: Security Human Resources (HR) Demonstration of Employee Information

1-15

About Auditing in an Oracle Database Real Application
Security Environment

Another aspect of security is auditing in an Oracle Database Real Application Security
environment. Real Application Security administration and run-time actions can be
audited by configuring and enabling unified audit policies. For information about unified
auditing in an Oracle Database Real Application Security environment, see Oracle
Database Security Guide.

The following static data dictionary views are defined for auditing policies specifically
for Oracle Database Real Application Security:

• DBA_XS_AUDIT_POLICY_OPTIONS - describes the auditing options that were defined
for Real Application Security unified audit policies. See Oracle Database
Reference for more information.

• DBA_XS_AUDIT_TRAIL - provides detailed information about Real Application
Security that were audited. See Oracle Database Reference for more information.

• DBA_XS_ENB_AUDIT_POLICIES - lists users for whom Real Application Security
unified audit polices are enabled. See Oracle Database Reference for more
information.

Support for Pluggable Databases
The multitenant architecture enables an Oracle database to contain a portable
collection of schemas, schema objects, and nonschema objects that appear to an
Oracle Real Application Security application user as a separate database. A
multitenant container database (CDB) is an Oracle database that includes one or more
pluggable databases (PDBs).

Oracle Real Application Security can be used with Oracle Multitenant to provide
increased security for consolidation.

Because Oracle Real Application Security entities are scoped within a PDB, each PDB
has its own Real Application Security metadata, such as users, roles, privileges, ACLs,
data security policies, and so forth. As a result, Real Application Security can prevent
privileged user access inside a PDB between and among applications and between
the PDB and the common privileged user at the container database.

As SYS is the schema owner for Oracle Real Application Security entities, Real
Application Security entities created in root can only be accessed by the SYS user in
root. The same is true for other operating systems in that the SYS user is the schema
owner for Oracle Real Application Security entities and only the SYS user has access
to these entities. Similarly, Real Application Security entities created within a local
PDB, can only be accessed in the local PDB.

Since Oracle Real Application Security direct login users have a password associated
with them, these users can be provisioned within a PDB, using a single sqlnet.ora
parameter to support them.

Oracle Real Application Security administration involves PDB specific administrative
privileges and a schema to qualify the name for Real Application Security entities. The
schema name can be common; however, entities created under the naming scope of a
common schema are not common.

Chapter 1
About Auditing in an Oracle Database Real Application Security Environment

1-16

Oracle Real Application Security auditing is PDB specific.

An Oracle Real Application Security application user can connect to a PDB using a
service whose pluggable database property has been set to the relevant PDB.

See Also:

Introduction to the Multitenant Architecture and Overview of the Multitenant
Architecture in Oracle Database Concepts.

Oracle Database Administrator’s Guide for more information about PDBs and
for more details about configuring the services to connect to various PDBs

Chapter 1
Support for Pluggable Databases

1-17

2
Configuring Application Users and
Application Roles

This chapter contains:

• About Configuring Application Users

• About Configuring Application Roles

• Effective Dates for Application Users and Application Roles

• About Granting Application Privileges to Principals

See Also:

"XS_PRINCIPAL Package"

About Configuring Application Users
This section contains the following topics:

• About Application User Accounts

• Creating a Simple Application User Account

• About Creating a Direct Login Application User Account

• Resetting the Application User's Password with the SQL*Plus PASSWORD
Command

• Configuring an Application User Switch

• Validating an Application User

About Application User Accounts
Traditional database users own database schemas and can create traditional
heavyweight database sessions to those schemas.

Application users do not own database schemas, but can create application sessions
to the database through the middle tier provided they are granted the role or roles with
the appropriate object privileges for accessing tables. Application users can also
create heavyweight database sessions by connecting to the database directly through
direct login application user accounts provided these accounts are associated with a
schema and the XSCONNECT application role is granted to these application users. A
profile can also be created and assigned to each of these application users.

This section contains: General Procedures for Creating Application User Accounts.

2-1

General Procedures for Creating Application User Accounts
The general procedure for creating an application user account is as follows:

1. Create a security manager user, sec_mgr, as follows and grant this user create
session database privilege and Real Application Security xs_session_admin
database role. Next, execute the xs_admin_util.grant_system_privilege call to
grant the Real Application Security least system privilege PROVISION to sec_mgr as
a database user. As the security manager, you can now create users and roles,
set passwords, and so forth, and administer sessions using the Real Application
Security least system privilege.

sqlplus /nolog
SQL> connect sys/password as sysdba
SQL> grant create session, xs_session_admin to sec_mgr identified by
password;
SQL> exec sys.xs_admin_util.grant_system_privilege('provision',
'sec_mgr', sys.xs_admin_util.ptype_db);

2. Log in to SQL*Plus as a user who has either the Real Application Security
PROVISION system privilege or the database CREATE USER system privilege.

sqlplus sec_mgr
Enter password: password
Connected.

See "XS_PRINCIPAL Package" for more information about the XS_PRINCIPAL
package and specifically the "CREATE_USER Procedure".

You must have the privileges required to create, modify, or drop application users
and roles. These privileges are governed by the same system privileges required
to create, modify, or drop database users and roles. For more information about
these and other SQL statements, see Oracle Database SQL Language Reference.

3. Create the application users with the XS_PRINCIPAL.CREATE_USER procedure.

Select the appropriate type, and follow the instructions in these sections:

• "Creating a Simple Application User Account"

• "About Creating a Direct Login Application User Account"

Other Tasks
After you create the application user account, you can grant the account a role, which
provides privileges for the application users. For more information, see "Granting an
Application Role to an Existing Application User".

Chapter 2
About Configuring Application Users

2-2

Creating a Simple Application User Account

Note:

In SQL*Plus, case sensitivity is an issue for lower case characters and
special characters, so keep these guidelines in mind.

• An application user whose name contains lower case or special
characters must connect to SQL*Plus with the account name in double
quotation marks:

For example:

CONNECT "lwuser1"
Enter password: password
Connected.

• The name of an application role that contains lower case or special
characters must be entered in SQL*Plus enclosed in double quotation
marks.

For example:

GRANT cust_role TO "app_regular_role";

When you create a simple application user account, the schema argument specifies
the schema name to use to resolve unqualified names. This does not give you any
privileges, and it is just used for name resolution purposes. If the schema name is not
specified, XS$NULL, is used.

To create a simple application user account, do the following:

1. Log in.

For example, if sec_mgr has the CREATE USER privilege, log in as follows:

sqlplus sec_mgr
Enter password: password
Connected.

2. Create the application user account.

For example:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER('lwuser1');
END;
/

As a user with DBA role, you can check the user creation by querying the
DBA_XS_USERS data dictionary view as follows. See "DBA_XS_USERS" for more
information.

SELECT NAME FROM DBA_XS_USERS;

NAME

Chapter 2
About Configuring Application Users

2-3

XSGUEST
LWUSER1

This output displays the existing application user accounts. The XSGUEST user
account is an already existing or predefined system created user account.

For detailed information about the XS_PRINCIPAL.CREATE_USER procedure, see
"CREATE_USER Procedure".

You can delete an application user account using the
XS_PRINCIPAL.DELETE_PRINCIPAL procedure, see "DELETE_PRINCIPAL
Procedure".

About Creating a Direct Login Application User Account
This section contains:

• Creating Direct Login Application User Accounts

• Procedure for Creating the Direct Login Application User Account

• Setting a Password Verifier for Direct Application User Accounts

• Oracle Label Security Context Is Established in Direct Logon Session

Creating Direct Login Application User Accounts
You can use an application user account to directly log into the database. This is
useful for users who need to perform functions such as logging directly into SQL*Plus
without logging in through SSO or a Web interface. The direct login user must have a
password.

Procedure for Creating the Direct Login Application User Account
To create a direct login application user account:

1. Log in as described in "General Procedures for Creating Application User
Accounts".

sqlplus sec_mgr
Enter password: password
Connected.

2. Create the application user account.

For example, to create an application user account, lwuser1, whose default
database schema is HR:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER
 (name => 'lwuser1',
 schema => 'HR');
END;/

Chapter 2
About Configuring Application Users

2-4

Note:

If the schema does not exist, the direct login fails.

When this Real Application user directly connects to the database for name
resolution of unqualified database objects in queries, HR schema is used as the
default schema. For example:

SELECT COUNT(*) FROM EMPLOYEES;

3. Create a password for the application user account.

For example:

BEGIN
 SYS.XS_PRINCIPAL.SET_PASSWORD('lwuser1', 'password');
END;
/

Set the password as described in "SET_PASSWORD Procedure". When you use
the SET_PASSWORD procedure, it creates a verifier for you based on the password
and the type parameter, and then inserts the verifier and the value of the type
parameter into the dictionary table.

Note:

Replace password with a secure password. See Oracle Database
Security Guide for more information about password guidelines.

4. Create a profile named prof and assign this profile to the application user account.

For example:

CREATE PROFILE prof LIMIT PASSWORD_REUSE_TIME 1/1440 PASSWORD_REUSE_MAX 3
PASSWORD_VERIFY_FUNCTION Verify_Pass;

BEGIN
 SYS.XS_PRINCIPAL.SET_PROFILE('lwuser1','prof');
END;

The user assigning the profile must have ALTER_USER privilege. See the
"SET_PROFILE Procedure" for more information.

5. Grant the role XSCONNECT to the user to allow access to the database.

For example:

BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser1', 'XSCONNECT');
END;
/

Next, you are ready to assign privileges to the application user account. Go to "About
Granting Application Privileges to Principals".

Afterward, the user can connect to the database as follows. For example:

Chapter 2
About Configuring Application Users

2-5

CONNECT lwuser1
Password: password

Setting a Password Verifier for Direct Application User Accounts
Optionally, you can set a password verifier for this password (a hash transformed
password), enabling administrators to migrate users into Real Application Security with
knowledge of the verifier and not the password. If you do not set a password verifier,
the default hashing algorithm is XS_SHA512. For more information, see the
SET_PASSWORD Procedure and the SET_VERIFIER Procedure.

Example 2-1 shows how to use the XS_PRINCIPAL.SET_VERIFIER procedure to set the
password verifier to the value as determined from a query of the XS$VERIFIERS
dictionary table, using the hashing algorithm XS_SHA512 for the application user
account LWUSER1 by following these steps:

1. Query the view DBA_XS_OBJECTS to obtain the ID value for user LWUSER1.

2. Query the XS$VERIFIERS dictionary table for user LWUSER1 whose ID is
2147493730. The value of the verifier includes its type as value “T” followed by a
colon (:) to denote that it is a verifier type of XS_SHA512, which is also indicated as
being of type# 2.

3. Using the entire verifier value including “T:”, set the verifier for user LWUSER1. The
following example shows each of these steps.

Example 2-1 Setting the Password Verifier Using the Hash Algorithm
XS_SHA512

sqlplus sec_mgr
Enter password: password
Connected.

SQL> column name format A10;
SQL> column owner format A6;
SQL> select NAME, OWNER, ID, TYPE, STATUS from DBA_XS_OBJECTS where NAME
= 'LWUSER1';

NAME OWNER ID TYPE STATUS
---------- ------ ---------- ------------------ --------
LWUSER1 SYS 2147493730 PRINCIPAL VALID

SQL> column user# format 9999999999;
SQL> column type# format 99;
SQL> column verifier format A62;
SQL> select USER#, VERIFIER, TYPE# from XS$VERIFIERS where USER# =
'2147493730';

 USER# VERIFIER
TYPE#
----------- --

 2147493730 T:
9BA95FEF2C2630A2BAACF2E7C5E41B0D50CDC7B0B60C88AD4FE81F8155D0 2
 02F99EEAF9D95477E4749870C67FDE870E154ED17809C359777F979E269010
 823FB981B2A998915EB1439FE3C6C1542A239C

Chapter 2
About Configuring Application Users

2-6

SQL> BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser1','T:
9BA95FEF2C2630A2BAACF2E7C5E41B0D50CDC7B0B6
0C88AD4FE81F8155D002F99EEAF9D95477E4749870C67FDE870E154ED17809C359777F979E2
69010823FB
981B2A998915EB1439FE3C6C1542A239C', XS_PRINCIPAL.XS_SHA512);
END;
/ 2 3 4 5

PL/SQL procedure successfully completed.

For this procedure to complete successfully, both the verifier value and its type must
match the information in the VERIFIER column of the XS$VERIFIERS dictionary table for
the user whose verifier is being set. Note that when you change the password for an
application user, it automatically changes its verifier value with the option of changing
its verifier type.

This example set the verifier to its same exact value to show the steps involved. You
have the option to set the verifier for a password to any verifier value that displays for
an application user when you query the XS$VERIFIERS dictionary table as long as the
verifier value matches the verifier type that you set. For example, if you wanted to
change the verifier value and the verifier type to XS_SALTED_SHA1, do the following.

SQL> BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser1','S:
14DC0F5ABB72FC869549B1F845C548E0BEF7B863A116DB24DFAE22F0501E',
XS_PRINCIPAL.XS_SALTED_SHA1);
END;
/ 2 3 4

PL/SQL procedure successfully completed.

Note that this is the same verifier value and verifier type that was set for application
user LWUSER3 as shown in the SET_VERIFIER Procedure.

Oracle Label Security Context Is Established in Direct Logon Session
Describes Oracle Label Security support for Real Application Security users.

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports
Real Application Security users. This means that when a Real Application Security
user attaches with Real Application Security user session through direct logon, the
user can exercise its own Oracle Label Security authorization. Oracle Label Security
context is established during the attach session.

Chapter 2
About Configuring Application Users

2-7

See Also:

• Attaching an Application Session to a Traditional Database Session for
more Information about how Oracle Label Security supports Real
Application Security users

• Oracle Label Security Administrator’s Guide for more Information about
Oracle Label Security

Resetting the Application User's Password with the SQL*Plus
PASSWORD Command

As the security administrator, sec_mgr, you have the create session database
privilege and Real Application Securityxs_session_admin database role and in
addition, sec_mgr is granted the Real Application Security PROVISION least system
privilege as a database user. As the security manager, you can now create users and
roles, set passwords, and so forth, and administer sessions using the Real Application
Security least system privilege.Example 2-2 shows how the security administrator can
reset the password for user lwuser2 using the SQL*Plus PASSWORD command.

However, if you as user lwuser2, perform a self password change using the SQL*Plus
PASSWORD command invoked from an explicitly attached session (a session attached
using the ATTACH_SESSION procedure or the attachSession() method in Java), the
session must have the ALTER USER privilege and the user name must be provided with
the PASSWORD command.

Example 2-3 shows how the application user lwuser2 explicitly attached to a session,
performs a self password change that fails because the users session does not have
the ALTER USER privilege.

Example 2-4 shows how an application user lwuser2 explicitly attached to a session
having the ALTER USER privilege can perform a self password change. The user's self
password change is successful.

The SET_PASSWORD procedure does not prompt for old password, but requires either
Real Application Security PROVISION privilege as the least privilege, or database ALTER
USER privilege. (Note that SET_PASSWORD is the Real Application Security PL/SQL
procedure, not the SQL*Plus PASSWORD command.) If the user's session has the
PROVISION least privilege or the ALTER USER privilege, you can reset the password for
any application user from any application user's session (including an explicitly
attached and a direct logon session) or the database user session if that session has
the PROVISION least privilege or the ALTER USER privilege. The SQL*Plus PASSWORD
command never prompts for the old password if you are changing another application
user's password.

Example 2-2 DBA Resets the Password with a Password Change Operation for
User lwuser2 When Not Explicitly Attached to a Session

sqlplus sec_mgr
Enter password: password
Connected.
SQL> BEGIN
 2 SYS.XS_PRINCIPAL.CREATE_USER('lwuser2');

Chapter 2
About Configuring Application Users

2-8

 3 END;
 4/

PL/SQL orocedure successfully completed.

SQL> PASSWORD lwuser2
Changing password for lwuser2
New password: password
Retype new password: password
Password changed

Example 2-3 User lwuser2 Performs a Self Password Change that Fails When
Explicitly Attached to a Session Because the Session Lacks the ALTER USER
Privilege

sqlplus sec_mgr
Enter password: password
Connected.
SQL> DECLARE
 2 SESSIONID RAW(16);
 3 BEGIN
 4 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser2', sessionid);
 5 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 6 END;
 7 /

PL/SQL procedure successfully completed.

SQL> CONNECT lwuser2
Enter password: password
Connected.
SQL> SELECT SYS.XS_SYS_CONTEXT('XS$SESSION','USERNAME') FROM DUAL;

XS_SYS_CONTEXT('XS$SESSION','USERNAME')
--
LWUSER2

SQL> PASSWORD lwuser2
Changing password for lwuser2

Old password: password
New password: password
Retype new password: password
ERROR:
ORA-01031: insufficient privileges

Password unchanged

Example 2-4 A Self Password Change Succeeds When Explicitly Attached to a
Session and User lwuser2's Session Has the ALTER USER Privilege

sqlplus sec_mgr
Enter password: password
Connected.
SQL> CREATE ROLE pwdchg;

Role created.

SQL> GRANT ALTER USER TO pwdchg;

Chapter 2
About Configuring Application Users

2-9

Grant succeeded.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE(NAME => 'resetpwd_role', ENABLED => TRUE);

PL/SQL procedure successfully completed.

SQL> GRANT pwdchg TO resetpwd_role;

Grant succeeded.

SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser2','resetpwd_role');

PL/SQL procedure successfully completed.

SQL> CONNECT lwuser2
Enter password: password
Connected.

SQL> SELECT SYS.XS_SYS_CONTEXT('XS$SESSION','USERNAME') FROM DUAL;

SYS.XS_SYS_CONTEXT('XS$SESSION','USERNAME')
--
LWUSER2

SQL> PASSWORD lwuser2
Changing password for lwuser2
Old password: password
New password: password
Retype new password: password
Password changed
SQL>

Configuring an Application User Switch
Using the XS_PRINCIPAL.ADD_PROXY_USER procedure, you can add an application user
to proxy another application user and assume the application roles of that application
user. You can use the DBMS_XS_SESSIONS.SWITCH_USER procedure to switch
application users in a session if the user has been added as a proxy.

Assume app_user1 has application roles role1 and role2. Example 2-5 allows you to
proxy the application roles role1 and role2 of app_user1 to app_user2. The call
add_proxy_user('app_user1', 'app_user2', pxy_roles) allows app_user2 to
switch to app_user1 and assume app_user1's roles, role1 and role2. It does not grant
the roles to app_user2.

The query of view DBA_XS_ROLE_GRANTS shows that roles, roles1 and roles2 are still
only granted to app_user1 and not to app_user2, and that app_user2 only assumed
these roles as a proxy user.

The query of view DBA_XS_PROXY_ROLES shows that app_user2 is the proxy user,
app_user1 is the target user, and the target roles are role1 and role2.

The query of view DBA_XS_SESSIONS also shows that app_user2 is the proxy user in
this session.

As the application user with DBA role, you can create a session for app_user2 and
switch application user to app_user1, as shown in Example 2-6.

Chapter 2
About Configuring Application Users

2-10

This example first creates a session with app_user2 and attaches to it. Then
app_user2 switches to app_user1 and assumes app_user1's roles, role1 and role2.

The query of view DBA_XS_ROLE_GRANTS shows that roles, roles1 and roles2 are still
only granted to app_user1 and not to app_user2, and that app_user2 only assumed
these roles as a proxy user.

The query of view DBA_XS_SESSION_ROLES shows that roles role1 and role2 are
associated with the same session ID in which app_user1 was switched with
app_user2.

The query of view DBA_XS_SESSIONS also shows that app_user2 is the proxy user in
this session.

Example 2-5 Configuring a Proxy Application User

sqlplus sec_mgr
Enter password: password
Connected.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role1',true);
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role2',true);

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user1','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user1', 'password');
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user2','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user2', 'password');

SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role1');
SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role2');

DECLARE
 pxy_roles XS$NAME_LIST;
begin
 pxy_roles := XS$NAME_LIST('role1','role2');
 sys.xs_principal.add_proxy_user(target_user => 'app_user1', proxy_user =>
'app_user2', target_roles => pxy_roles);
end;
/

SQL> SELECT grantee, granted_role FROM DBA_XS_ROLE_GRANTS;

SQL> SELECT proxy_user, target_user, target_role FROM DBA_XS_PROXY_ROLES;

SQL> SELECT user_name, sessionid, proxy_user FROM DBA_XS_SESSIONS;

Example 2-6 Creating a Session and Switching an Application User

sqlplus sec_mgr
Enter password: password
Connected.
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user1','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user1', 'password');
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user2','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user2', 'password');

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role1',true);
SQL> EXEC SYS.XS_PRINCIPAL.CREATE_ROLE('role2',true);

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user1','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user1', 'password');

Chapter 2
About Configuring Application Users

2-11

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('app_user2','HR');
SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_user2', 'password');

SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role1');
SQL> EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_user1', 'role2');

declare
 sessionid raw(16);
begin
 sys.dbms_xs_sessions.create_session('app_user2', sessionid);
 sys.dbms_xs_sessions.attach_session(sessionid);
 sys.dbms_xs_sessions.switch_user('app_user1');
end;
/

SQL> SELECT grantee, granted_role FROM DBA_XS_ROLE_GRANTS;

SQL> SELECT sessionid, role FROM DBA_XS_SESSION_ROLES;

SQL> SELECT user_name, sessionid, proxy_user FROM DBA_XS_SESSIONS;

Validating an Application User
Oracle recommends that you always validate the Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of
validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects. To validate an application
user account, use the XS_DIAG.VALIDATE_PRINCIPAL function. The caller has invoker's
rights on this package and must have ADMIN_ANY_SEC_SECURITY privilege to run the
XS_DIAG package.

See the "VALIDATE_PRINCIPAL Function" for more information.

About Configuring Application Roles
This section contains the following topics:

• About Application Roles

• Regular and Dynamic Application Roles

• About Configuring an Application Role

• Predefined Regular Application Roles and Dynamic Application Roles

About Application Roles
An application role is a role that can only be granted to an application user or to
another application role. Application roles provide a way to group application users
who must have a common application privilege, identified within an ACL, in order to
access an application. The XS_PRINCIPAL.CREATE_ROLE procedure can create regular
application roles. The XS_PRINCIPAL.CREATE_DYNAMIC_ROLE procedure can create
dynamic application roles (one type of application role).

Application roles are conceptually similar to enterprise roles. An enterprise role can
only be granted to an enterprise user and that grant occurs outside the database.
Similarly, an application role can only be granted to an application user or application
role, and that grant occurs outside of the standard database grant mechanisms.

Chapter 2
About Configuring Application Roles

2-12

Dynamic roles cannot be granted to an application user or another application role, but
can only be enabled in an application session as a parameter in an attach session call
as described in "Dynamic Application Roles".

See Also:

• Oracle Database SQL Language Reference for more information about
SQL

• Oracle Database PL/SQL Language Reference for more information
about PL/SQL APIs

Regular and Dynamic Application Roles
Real Application Security allows regular and dynamic application roles.

This section contains the following topics:

• Regular Application Roles

• Dynamic Application Roles

Regular Application Roles
A regular application role is an application role that you can grant to an application
user or another application role (regular or dynamic). You can specify if you want the
regular application role to be enabled by default or not.

Dynamic Application Roles
A dynamic application role is an application role that is enabled only under certain
situations, for example, when a user has logged on using SSL, or during a specific
period of time, and so on. Dynamic application roles might be used, for example, if
there is some application privilege granted to all application users connecting during
weekdays. If that criterion is met, then the application enables those application roles.

The application determines the criteria for enabling a dynamic application role,
however the criteria can be evaluated by the application or by the database at the
request of the application.

• When the Application Evaluates the Criteria

If the application evaluates the criteria and the application role meets it, then the
application, if it is attached to an application session, can enable dynamic
application roles for application users. When the application detaches from the
application session, the dynamic application role is automatically disabled.

For security reasons, you cannot disable dynamic application roles during the
session. This is especially important because they may infer negative application
privileges.

• When the Database Evaluates the Criteria

If the database evaluates the criteria and the application role meets it, then the
database can enable application roles for the application user. The database can
disable dynamic application roles based on two types of time-outs: one from the

Chapter 2
About Configuring Application Roles

2-13

last time the session was accessed, and one from the last time the session was
authenticated. Oracle Database checks these time-outs when the session is first
attached.

You do not need to grant the dynamic application role formally to a user beforehand.
There is no way to enable or disable a dynamic application role through the standard
enable and disable APIs. You cannot grant dynamic application roles to other
application roles, but you can grant other application roles to dynamic roles.

See Also:

"Predefined Regular Application Roles and Dynamic Application Roles"

About Configuring an Application Role
This section contains the following topics:

• Creating a Regular Application Role

• Creating a Dynamic Application Role

• Validating an Application Role

Creating a Regular Application Role
To create a regular application role, log into SQL*Plus as user sec_mgr with the CREATE
ROLE system privilege, and then use the XS_PRINCIPAL.CREATE_ROLE procedure.

Example 2-7 shows how to create a regular application role called app_regular_role.
The start_date and end_date parameters specify the active start and end times for
this application role. The enable parameter is set to TRUE.

After you create the regular application role, you are ready to grant it to one or more
application users or application roles. See the following section:

"About Granting an Application Role to an Application User"

Example 2-7 Creating a Regular Application Role

sqlplus sec_mgr
Enter password: password
Connected.

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 ed_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := SYSTIMESTAMP;
 ed_date := TO_TIMESTAMP_TZ('2013-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS');
 SYS.XS_PRINCIPAL.CREATE_ROLE
 (name => 'app_regular_role',
 enabled => TRUE,
 start_date => st_date,
 end_date => ed_date);
END;
/

Chapter 2
About Configuring Application Roles

2-14

Creating a Dynamic Application Role
To create a dynamic application role, log into SQL*Plus as user sec_mgr with the
CREATE ROLE system privilege and then use the XS_PRINCIPAL.CREATE_DYNAMIC_ROLE
procedure.

Example 2-8 shows how to create a dynamic application role called
app_dynamic_role. The optional duration parameter specifies the period of time (in
minutes) the application role is active. The scope parameter specifies the scope for
this role, which can be either SESSION_SCOPE (the default value) or REQUEST_SCOPE.
SESSION_SCOPE means the enabled dynamic role is still enabled when you detach the
session and attach to the session again, unless you explicitly specify that it be
disabled in the session reattach. REQUEST_SCOPE means that the role is disabled after
the session is detached.

In this example, the dynamic application role is active for 40 minutes, and the scope is
set to SESSION_SCOPE for the current application session. So the dynamic application
role is active even when you detach the session and attach to the session again as
long as the time limit has not exceeded 40 minutes after having created the dynamic
application role.

Example 2-8 Creating a Dynamic Application Role

sqlplus sec_mgr
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE
 (name => 'app_dynamic_role',
 duration => 40,
 scope => XS_PRINCIPAL.SESSION_SCOPE);
END;
/

Validating an Application Role
Oracle recommends that you should always validate Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of
validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects. To validate an application
role, use the XS_DIAG.VALIDATE_PRINCIPAL function. See the "VALIDATE_PRINCIPAL
Function" for more information.

See Troubleshooting Oracle Database Real Application Security for troubleshooting
advice.

Predefined Regular Application Roles and Dynamic Application Roles
Using predefined dynamic application roles in a Real Application Security session,
application users can acquire application privileges based on their run-time states.
These application roles cannot be acquired by grants.

As an example, an application role may be enabled for application users connecting
from within the corporate firewall, which grants application users more application
privileges than connecting from outside the firewall.

Chapter 2
About Configuring Application Roles

2-15

See "Roles" for a description of Real Application Security predefined regular
application roles, dynamic application roles, and database roles.

Regular application roles can be granted to an application user, but dynamic
application roles cannot. Dynamic application roles are enabled based on user state.

See "Regular and Dynamic Application Roles" for descriptions.

Effective Dates for Application Users and Application Roles
You can specify effective dates for application users, application roles, and role grants.
The application user or application role is available only within the period defined by
the effective start and end date. Example 2-9 shows how effective dates are specified
for an application user.

Sometimes the effective date restriction does not need to be an attribute of an
application user or application role. Instead, it is only needed to restrict the effective
dates on a per role grant basis. In this case, you can specify beginning and ending
effective dates for an application role grant. This only constrains that particular
application role grant and allows for implementing fine-grained access control policy.
Example 2-10 shows how effective dates are specified for an application role.

These are the most direct consequences of effective date restrictions:

• If an application user is not currently effective (that is, within the period defined by
its start and end date), the session for the particular application user cannot be
created.

• If an application role is not currently effective, the application role (and any
descendants) is not be available to the application user in the session.

• For application roles that are shared children of multiple application roles, the child
application roles are available as long as there is at least one parent that is
effective.

• If the application role grant of an application role is not currently effective, the
application role (and any descendants) is not available to the application user or
application role to which it is granted.

Note:

The effective dates should be used in the policy after a careful consideration
of the nature of the restrictions that they impose on the use of application
users and application roles.

Example 2-9 Setting Effective Dates for an Application User

sqlplus sec_mgr
Enter password: password
Connected.

DECLARE
 startDate TIMESTAMP := TO_TIMESTAMP (
 '2012-01-01 11:00:00','YYYY-MM-DD HH:MI:SS');
 endDate TIMESTAMP := TO_TIMESTAMP (
 '2013-01-01 11:00:00','YYYY-MM-DD HH:MI:SS');

Chapter 2
Effective Dates for Application Users and Application Roles

2-16

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER
 (name => 'lwuser1',
 start_date => startDate,
 end_date => endDate);
END;
/

Example 2-10 Setting Effective Dates for an Application Role of an Application
User

sqlplus sec_mgr
Enter password: password
Connected.

DECLARE
 startDate TIMESTAMP := TO_TIMESTAMP ('2012-01-01 11:00:00','YYYY-MM-DD
 HH:MI:SS');
 endDate TIMESTAMP := TO_TIMESTAMP ('2013-01-01 11:00:00','YYYY-MM-DD
 HH:MI:SS');
BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES
 (grantee => 'lwuser1',
 role => 'app_regular_role',
 start_date => startDate,
 end_date => endDate);
END;
/

About Granting Application Privileges to Principals
This section contains the following topics:

• About Granting an Application Role to an Application User

• Granting an Application Role to Another Application Role

• Granting a Database Role to an Application Role

About Granting an Application Role to an Application User
This section contains the following topics:

Creating a New Application User and Granting This User an Application Role
Example 2-11 shows how to grant an application role, appl1_regular_role, to an
application user, lwuser1, when the application user account is created.

To find a listing of existing application roles, query the DBA_XS_ROLES data dictionary
view.

Example 2-11 Creating a New Application User and Granting This User an
Application Role

sqlplus sec_mgr
Enter password: password
Connected.

Chapter 2
About Granting Application Privileges to Principals

2-17

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER('lwuser1');
 SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser1', 'appl1_regular_role');
END;
/

Granting an Application Role to an Existing Application User
Example 2-12 shows how to grant an application role, appl1_regular_role, to an
existing application user, lwuser1. You cannot grant dynamic application roles to an
existing application user.

You can find a listing of existing application user accounts by querying the
DBA_XS_USERS view.

Example 2-12 Granting an Application Role to an Existing Application User

sqlplus sec_mgr
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES('lwuser1', 'appl1_regular_role');
END;
/

Granting an Application Role to Another Application Role
Example 2-13 shows how to grant a regular application role to another regular
application role. You cannot grant dynamic application roles to other regular
application roles, but you can grant other regular application roles to dynamic
application roles. To find a listing of existing application roles, query the DBA_XS_ROLES
view (see "DBA_XS_ROLES").

Example 2-13 Granting a Regular Application Role to Another Regular
Application Role

sqlplus sec_mgr
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.GRANT_ROLES(grantee => 'app_regular_role', role =>
'appl1_regular_role');
END;
/

Granting a Database Role to an Application Role
To grant a database role to an application role, use the SQL GRANT statement. You can
find a listing of existing database roles by querying the DBA_ROLES data dictionary view.

Example 2-14 shows how to grant the database role, cust_role, to the application role
app_regular_role.

Chapter 2
About Granting Application Privileges to Principals

2-18

Example 2-14 Granting a Database Role to an Application Role

sqlplus sec_mgr
Enter password: password
Connected.

GRANT cust_role TO app_regular_role;

Chapter 2
About Granting Application Privileges to Principals

2-19

3
Configuring Application Sessions

This chapter contains:

• About Application Sessions

• About Creating and Maintaining Application Sessions

• About Manipulating the Application Session State

• About Administrative APIs for External Users and Roles

• About Real Application Security Session Privilege Scoping Through ACL

About Application Sessions
An application session contains information relevant to the application and its user. An
application session stores application session state as a collection of attribute-value
pairs. These attribute value pairs are divided into namespaces. Unlike traditional
heavyweight database sessions, an application session does not hold its own
database resources, such as transactions and cursors. Because application sessions
consume far fewer server resources than heavyweight sessions, an application
session can be dedicated to each end application user. An application session can
persist in the database and resume later with minimal cost.

To configure an application session, you work in two phases:

1. You create and maintain the application session.

2. You can manipulate the session state during the life of the session.

You can use either PL/SQL APIs or Java APIs to configure application sessions. This
chapter describes the programmatic creation, use, and maintenance of application
sessions in PL/SQL, and includes specific links to comparable Java information.

See Also:

• Oracle Database Real Application Security SQL Functions and Oracle
Database Real Application Security PL/SQL Packages for information
about PL/SQL API syntax

• Oracle Database Real Application Security Java API Reference for
information about Java API syntax (in Javadoc format)

• Using Real Application Security in Java Applications for information
about performing tasks with Java APIs

This section contains:

• About Application Sessions in Real Application Security

• Advantages of Application Sessions

3-1

About Application Sessions in Real Application Security
Figure 3-1 shows a Real Application Security architecture diagram and indicates how
application sessions fit into it. The figure shows applications creating application
sessions in the database. Some of these application sessions are associated with
traditional database (DB) sessions.

Figure 3-1 also shows other components of Real Application Security such as ACLs,
application privileges, application users, and application roles.

Figure 3-1 Real Application Security Architecture

Oracle Database

Real Application Security

Real Application Security
Java APIs

Java Container

Web
Clients

Application Server

Application
Session Cache

ACL
Cache

JEE Applications

Connection Pool

DB Session
1

DB Session
2

DB Session
3

Attached

Server / External
Identity Store

To Access

JDBC

Policy
Synchronization

ACLs, Application Privileges, Users, Roles

Real Application Security

Application Sessions

Attached

DB Session
1

DB Session
2

DB Session
3

DB Session
4

SQL*Plus

Chapter 3
About Application Sessions

3-2

Advantages of Application Sessions
Application sessions have functional advantages over traditional database sessions.
For example, traditional database sessions are typically unaware of the end user
identities or the security policies for those end users. On the contrary:

• Application sessions encapsulate end user's security context. They enable
applications to use database authorization mechanisms for access control based
on the end user identity.

• An application session can be associated with multiple database sessions
simultaneously.

• They are accessible by all nodes in an Oracle Real Application Clusters (Oracle
RAC) environment.

Application sessions have these performance advantages over traditional database
sessions:

• They can be created with less overhead than traditional database sessions.

• They can persist in the database and resume later with minimal cost.

• Real Application Security can collect session attribute changes and session states
on the client, using caches. Then, these changes are appended to the database
until the next database roundtrip, reducing the number of database roundtrips.

About Creating and Maintaining Application Sessions
This section contains:

• Creating an Application Session

• Creating an Anonymous Application Session

• Attaching an Application Session to a Traditional Database Session

• Setting a Cookie for an Application Session

• Assigning an Application User to an Anonymous Application Session

• Switching a Current Application User to Another Application User in the Current
Application Session

• About Creating a Global Callback Event Handler Procedure

• Configuring Global Callback Event Handlers for an Application Session

• Saving an Application Session

• Detaching an Application Session from a Traditional Database Session

• Destroying an Application Session

Creating an Application Session
You can create an application session using the DBMS_XS_SESSIONS.CREATE_SESSION
procedure in PL/SQL or using the createSession method of the XSSessionManager
class in Java. To create an application session, the invoking user needs
CREATE_SESSION application privilege. This privilege can be obtained through
XS_SESSION_ADMIN Database role or by XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API

Chapter 3
About Creating and Maintaining Application Sessions

3-3

call (see "GRANT_SYSTEM_PRIVILEGE Procedure" for more information).
CREATE_SESSION procedure populates the unique identifier of the newly created
session in sessionid out parameter. This unique identifier can be used to refer to the
session in future calls. The DBA_XS_SESSIONS data dictionary view displays all the
application sessions in the database.

You can also specify a list of namespaces to be created when the session is created.
If you specify namespaces during creation of the session, the caller must have
application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
the ADMIN_NAMESPACE system privilege.

Example 3-1 shows how to create an application session with lwuser1.

Example 3-1 Creating an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
END;

See Also:

• CREATE_SESSION Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java createSession method (in
Javadoc format)

• Example 6-2 for information about a Java example of this task

Creating an Anonymous Application Session
You can also create an anonymous application session using the
DBMS_XS_SESSIONS.CREATE_SESSION procedure in PL/SQL or using the
createAnonymousSession method of the XSSessionManager class in Java. To create
an anonymous session through the PL/SQL API, you must specify the predefined user
name XSGUEST.

Example 3-2 shows how to create an anonymous session with the predefined user
XSGUEST.

After creating an anonymous application session, you can assign a named user to the
session.

Example 3-2 Creating an Anonymous Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
END;

Chapter 3
About Creating and Maintaining Application Sessions

3-4

See Also:

• CREATE_SESSION Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java createAnonymousSession
method (in Javadoc format)

• Example 6-2 for information about a Java example of this task

Attaching an Application Session to a Traditional Database Session
To use an application session, it must be associated with a database session. This
operation is called attach. You can attach an application session to a traditional
database session using the DBMS_XS_SESSIONS.ATTACH_SESSION procedure in PL/SQL
or the attachSession method of the XSSessionManager class in Java. A database
session can only attach one application session at a time. The
DBA_XS_ACTIVE_SESSIONS dynamic data dictionary view displays all attached
application sessions in the database.

To execute this procedure, the traditional session user must have the ATTACH_SESSION
application privilege. This privilege can be obtained through the XS_SESSION_ADMIN
Database role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call. If you
specify namespaces, then the user is required to have the application privileges
MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or ADMIN_NAMESPACE
system privilege.

Example 3-3 shows how to attach an application session to a database session.

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports
Real Application Security users. This means that Oracle Label Security context is
established in the Real Application Security session during the attach operation, so
that Oracle Label Security authorization can be exercised in the Real Application
Security user session. Oracle Label Security provides the ability to define data labels,
assign user labels and protect sensitive application data within the Oracle database.

For example, using Oracle Label Security data labels allows each row of a table to be
labeled based on its level of confidentiality. Data labels consist of 3 components:
levels, compartments, and groups. So a given data label should have one level, zero
or more compartments and zero or more groups associated with it. Compartments
allow defining finer granularity within a level – all data belonging to a particular project
can be labeled with the same compartment. Groups are hierarchical and a group can
thus be associated with a parent group.

In addition, using Oracle Label Security user labels, each user can be assigned labels
that constrain access to labeled data. Each user is assigned a range of levels,
compartments, and groups, and each session can operate within that authorized range
to access labeled data within that range.

Furthermore, using privileges, Oracle Label Security privileges are policy specific and
used to provide users specific rights to perform special operations or to access data
beyond their label authorizations. The list of all policy specific privileges is: FULL, READ,
COMPACCESS, PROFILE_ACCESS, WRITEUP, WRITEDOWN, and WRITEACROSS.

Chapter 3
About Creating and Maintaining Application Sessions

3-5

Using Oracle Label Security, trusted stored programs can be used. A trusted stored
program unit is a stored procedure, function, or package that has been granted one or
more label security privileges. Trusted stored program units are used to let users
perform privileged operations in a controlled manner, or update data at several labels.
By granting privileges to a program unit, the privileges required for users can be
effectively reduced.

Using Oracle Label Security, a policy is applied to a table or an entire schema after
defining data labels or user labels or both and assigning appropriate privileges to
users. When a policy is applied on a table, label security creates a policy specific
NUMBER column on the table to store numeric equivalent of the data labels defined
before for the policy. The column can be created as a user visible column or as a
hidden column. The user can specify various enforcement options when the policy is
applied on the table. The READ_CONTROL enforcement option for example protects the
table from queries and WRITE_CONTROL protects it from DML operations.

Establishing Oracle Label Security context in a Real Application Security session
therefore lets SELECT and DML operations return results authorized for the Real
Application Security user.

To attach a session with dynamic roles, a list of dynamic roles can be passed in the
PL/SQL ATTACH_SESSION procedure.

Note:

When developing the application, ensure that all application end user actions
are captured within an ATTACH_SESSION ... DETACH_SESSION programming
block. (For more information, see "Detaching an Application Session from a
Traditional Database Session").

Example 3-3 Attaching an Application Session

DECLARE
 sessionid raw(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
END;

See Also:

• ATTACH_SESSION Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java attachSession method (in
Javadoc format)

• Example 6-3 for information about a Java example of this task

• Oracle Label Security Administrator’s Guide for information about Oracle
Label Security

Chapter 3
About Creating and Maintaining Application Sessions

3-6

Setting a Cookie for an Application Session
You can associate a specific cookie with an application session using the
DBMS_XS_SESSIONS.SET_SESSION_COOKIE procedure in PL/SQL or the setCookie
method of the XSSessionManager class in Java. The cookie can also be associated at
the time of creation of the session through the CREATE_SESSION PL/SQL API. A cookie
is a token embedded in a user’s session by a web site during an application session.
So the next time the same user requests something from that web site, it sends the
cookie to the application session, which allows the server to associate the session with
that user.

To execute this procedure, the user must be granted the MODIFY_SESSION application
privilege. This privilege can be obtained through the XS_SESSION_ADMIN Database role
or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call.

Example 3-4 shows how to set a cookie for an application session.

Example 3-4 Setting a Cookie for an Application Session

DECLARE
 sessionid raw(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.SET_SESSION_COOKIE('Cookie1', sessionid);
END;

See Also:

• SET_SESSION_COOKIE Procedure for information about the syntax of
this PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java setCookie method (in Javadoc
format)

• Example 6-20 for information about a Java example of this task

Assigning an Application User to an Anonymous Application Session
You can assign a named application user to a currently attached anonymous
application session using the DBMS_XS_SESSIONS.ASSIGN_USER procedure in PL/SQL or
the assignUser method of the XSSessionManager class in Java. Assigning a user
changes the user session from anonymous to a named user.

To execute this procedure, the dispatcher or connection user must have the
ASSIGN_USER application privilege. This privilege can be obtained through the
XS_SESSION_ADMIN Database role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE
API call. If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
ADMIN_NAMESPACE system privilege. A list of dynamic roles can also be enabled using
the DBMS_XS_SESSIONS.ASSIGN_USER procedure.

Chapter 3
About Creating and Maintaining Application Sessions

3-7

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports
Real Application Security users. If the Real Application Security user is authorized in
any Oracle Label Security policy then, during an assign_user call, the corresponding
label security authorization is established for the named Real Application Security user
session. Establishing Oracle Label Security context in a Real Application Security
session therefore lets SELECT and DML operations return results authorized for the
Real Application Security user.

Example 3-5 shows how to assign the application user lwuser1 to an application
session.

Example 3-5 Assigning an Application User to an Application Session

DECLARE
 sessionid raw(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ASSIGN_USER('lwuser1');
END;

See Also:

• ASSIGN_USER Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java assignUser method (in Javadoc
format)

• Example 6-5 for information about a Java example of this task

• Attaching an Application Session to a Traditional Database Session for
information about how Oracle Label Security supports Real Application
Security users

• Oracle Label Security Administrator’s Guide for information about Oracle
Label Security

Switching a Current Application User to Another Application User in
the Current Application Session

You can switch or proxy the security context of the current application session to a
newly initialized security context for a specified application user using the
DBMS_XS_SESSIONS.SWITCH_USER procedure in PL/SQL or the switchUser method of
the Session interface in Java. To proxy another application user, the current
application session user must be set up as a proxy user for the target user before
performing the switch operation. This is performed through the
XS_PRINCIPAL.ADD_PROXY_USER PL/SQL API.

Switching a user changes the user session between two named users.

If the target application user of the proxy operation has a list of filtering roles (proxy
roles) set up for the proxy user, they are enabled in the session.

Chapter 3
About Creating and Maintaining Application Sessions

3-8

Beginning with Oracle Database 12c Release 2 (12.2), Oracle Label Security supports
Real Application Security users. This means that Oracle Label Security context of the
target_user will be established on switching from the proxy_user session to the
target_user session.

You can either retain or clear the application namespace and attributes after a switch
operation. When the keep_state parameter is set to TRUE, all application namespaces
and attributes are retained; otherwise, all previous state in the session is cleared.

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the
ADMIN_NAMESPACE system privilege.

Example 3-6 shows how to switch the application user lwuser1 to application user
lwuser2 in the current application session. Note that namespace templates ns1 and
ns2 should have already have been created by SYSDBA.

Example 3-6 Switching an Application User to Another Application User in the
Current Application Session

DECLARE
 sessionid RAW(16);
 nsList DBMS_XS_NSATTRLIST;
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.SWITCH_USER(username => 'lwuser2',
 keep_state => TRUE,
 namespaces => nsList);
END;

See Also:

• SWITCH_USER Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java assignUser method (in Javadoc
format)

• Example 6-6 for information about a Java example of this task

• Attaching an Application Session to a Traditional Database Session for
information about how Oracle Label Security supports Real Application
Security users

• Oracle Label Security Administrator’s Guide for information about Oracle
Label Security

About Creating a Global Callback Event Handler Procedure
The callback event handler procedure must adhere to the prototype, which includes a
specified set of arguments.

Chapter 3
About Creating and Maintaining Application Sessions

3-9

For example, the following callback_procedure specifies an existing PL/SQL
procedure, which is the event handler and shows its two possible forms.

PROCEDURE callback_procedure (sessionid in raw, error out pls_integer)

This first form includes two parameters, the sessionid in RAW and the out parameter
error, which is used for the purpose of setting the error. The sessionid contains the
session ID of the session in which the event was triggered. The out error parameter
can be used in the event handler code to display the error.

PROCEDURE callback_procedure (sessionid in raw, user in varchar2, error
out pls_integer)

This second form includes an additional parameter user in VARCHAR2 to specify the
user who triggered this event.

Note:

The error value must be explicitly set to a value in the PL/SQL body or in the
exception block as follows, error:= 0;.

Otherwise, the following error is raised, ORA-46071: Error occured in
event handler <name-of-event-handler> followed by another error,
ORA-1405: fetched column value is NULL, indicating that the error value is
NULL.

The following example shows the explicit setting of the error value using the second
form of the callback procedure.

CREATE OR REPLACE PACKAGE CALLBACK_PACKAGE AS
PROCEDURE CALLBACK_PROCEDURE (sessionid in RAW, user in VARCHAR2, error
out PLS_INTEGER);
END CALLBACK_PACKAGE;
/

CREATE OR REPLACE PACKAGE BODY CALLBACK_PACKAGE AS
PROCEDURE CALLBACK_PROCEDURE (sessionid in RAW, user in VARCHAR2, error
out PLS_INTEGER) IS
BEGIN
 error := 0;
 dbms_output.put_line('Inside callback procedure');
EXCEPTION
WHEN OTHERS THEN
 error:=0;
 dbms_output.put_line('Error');
END CALLBACK_PROCEDURE;
END CALLBACK_PACKAGE;

Chapter 3
About Creating and Maintaining Application Sessions

3-10

See Also:

• Configuring Global Callback Event Handlers for an Application Session

Configuring Global Callback Event Handlers for an Application
Session

A global callback event handler is a predefined PL/SQL procedure that can be invoked
to inspect, log, and modify the session state when certain session events of interest
occur. You can add multiple global callback event handlers on a session event. After
you create the PL/SQL procedure, you can register or deregister, or enable or disable
it using these procedures, respectively:

• DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK

Use this procedure to register a callback event handler.

• DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK

Use this procedure to deregister a global callback.

• DBMS_XS_SESSIONS.ENABLE_GLOBAL_CALLBACK

Use this procedure to enable or disable a global callback procedure by specifying
a value of TRUE for enable or FALSE for disable.

To execute these APIs the user must have the CALLBACK application privilege. This can
be obtained through the XSPROVISIONER application role or by calling the
XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API. You can configure one or more global
callback event handlers for use in an application session. If you configure multiple
callback event handlers, Oracle Database executes the handlers in the order in which
they were created.

Optionally, you can follow these steps to change the execution order:

1. Run the DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK procedure to deregister any
existing callback.

2. Run the DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK procedure to register the
callback.

Example 3-7 Registering a Global Callback in an Application Session

BEGIN
 SYS.DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK
 (DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,
 'CALLBACK_SCHM','CALLBACK_PKG','CALLBACK_PROC');
END;
/

Table 3-1 lists session events that can use callback event handlers.

Chapter 3
About Creating and Maintaining Application Sessions

3-11

Table 3-1 Session Events That Can Use Callback Event Handlers

Session Event When the Callback Will Be Executed

Creating a new application session After the session is created.

Attaching to an existing application session After the session is attached.

Enabling a dynamic application role After a dynamic application role is
enabled.

Disabling a dynamic application role After a dynamic application role is
disabled.

Direct login of an application session After the session is attached (if the
session attach is called as part of the
direct logon of an application session).

Assigning a named application user to an
anonymous application session

After the named user is assigned to the
anonymous application session.

Proxying from one named application user to
another named application user

After the application user is switched (if
the application user is not proxying back
to the original application user).

Proxying back from a named application user to the
original application user

After the application user is switched (if
the application user is proxying back to
the original application user).

Enabling a regular application role After the application role is enabled.

Disabling a regular application role After the application role is disabled.

Detaching from an existing application session or
database session

Before the session is detached.

Terminating an existing application session or
database session

Before the session is destroyed.

Direct logoff of an application session or database
session

Before the session is detached (if the
session detach is called as part of the
direct logoff of an application session).

Suppose you want to initialize certain application-specific states after creating a
session. Example 3-7 shows how to register a global callback that sets up the state
CALLBACK_PROC, which is defined in the package CALLBACK_PKG and owned by the
schema CALLBACK_SCHM.

The state CALLBACK_PROC is registered as a global callback for the event
CREATE_SESSION_EVENT.

For more examples, and for details about the syntax of these procedures, see the
following:

• "ADD_GLOBAL_CALLBACK Procedure"

• "DELETE_GLOBAL_CALLBACK Procedure"

• "ENABLE_GLOBAL_CALLBACK Procedure"

Chapter 3
About Creating and Maintaining Application Sessions

3-12

Saving an Application Session
You can save the current user application session using the
DBMS_XS_SESSIONS.SAVE_SESSION procedure in PL/SQL or the saveSession method of
the XSSessionManager class in Java. Use the save operation when session changes
need to be propagated immediately to other sessions using the same session as this
one. If the save operation is not used, then the session changes would be reflected in
other sessions only after this session is detached.

The calling user requires no privileges to perform this operation.

Example 3-8 shows how to save the current user application session.

Example 3-8 Saving the Current User Application Session

BEGIN
 SYS.DBMS_XS_SESSIONS.SAVE_SESSION;
END;

See Also:

• SAVE_SESSION Procedure for information about the syntax of these
PL/SQL procedures

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java detachSession method (in
Javadoc format)

• Example 7-4 for information about a Java example of this task

Detaching an Application Session from a Traditional Database
Session

You can detach an application session from the traditional database session using
either of these procedures:

• DBMS_XS_SESSIONS.DETACH_SESSION(abort => FALSE)

Use this procedure to detach the session and commit any changes that were
made since the last time session changes were saved. When you specify the
abort parameter as FALSE (the default value), all changes performed in the current
session are persisted. The currently attached user can perform this operation
without any additional privileges.

DETACH_SESSION is always performed on the currently attached session.

• DBMS_XS_SESSIONS.DETACH_SESSION(abort => TRUE)

Use this procedure to detach the session without saving the changes. When you
specify the abort parameter as TRUE, it rolls back the changes performed in the
current session. The role and namespace changes made to the session since the
attach are discarded.

Chapter 3
About Creating and Maintaining Application Sessions

3-13

Example 3-9 shows how to detach an application session from a database session
and commit the changes. Note that you can call DETACH_SESSION anywhere to detach
the currently attached session.

You can use the detachSession method of the XSSessionManager class in Java.

Example 3-10 shows how to detach a database session from an application session
without saving any changes.

Note:

When developing the application, ensure that all application end user actions
are captured within an ATTACH_SESSION ... DETACH_SESSION programming
block. (For more information, see "Attaching an Application Session to a
Traditional Database Session")

Example 3-9 Detaching and Committing an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
...
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
...
END;

Example 3-10 Detaching and Not Committing an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
...
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION(TRUE);
END;

See Also:

• DETACH_SESSION Procedure for information about the syntax of these
PL/SQL procedures

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java detachSession method (in
Javadoc format)

• Example 6-21 for information about a Java example of this task

Chapter 3
About Creating and Maintaining Application Sessions

3-14

Destroying an Application Session
You can terminate an application session using the
DBMS_XS_SESSIONS.DESTROY_SESSION procedure in PL/SQL or using the
destroySession method of the XSSessionManager class in Java. This procedure also
detaches all traditional sessions from the application session.

To execute this procedure, the invoking user must have the TERMINATE_SESSION
application privilege. This privilege can be obtained through the XS_SESSION_ADMIN
Database role or by the XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE API call.

Example 3-11 shows how to destroy an application session.

Example 3-11 Destroying an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;

See Also:

• DESTROY_SESSION Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java destroySession method (in
Javadoc format)

• Example 6-22 for information about a Java example of this task

About Manipulating the Application Session State
This section contains:

• About Using Namespace Templates to Create Namespaces

• Initializing a Namespace in an Application Session

• Setting Session Attributes in an Application Session

• Getting Session Attributes in an Application Session

• Creating Custom Attributes in an Application Session

• Deleting a Namespace in an Application Session

• Enabling Application Roles for a Session

• Disabling Application Roles for a Session

Chapter 3
About Manipulating the Application Session State

3-15

About Using Namespace Templates to Create Namespaces
An application uses a namespace to store application defined attribute-value pairs.
Often, an application needs to use the same namespace across different application
sessions. A namespace template provides a way to define and initialize a namespace.

A namespace template defines the namespace and its properties. It is used to initialize
the namespace in an application session. The namespace name must be the same as
the template that defines it.

This section contains:

• Components of a Namespace Template

• About Namespace Views

• Creating a Namespace Template for an Application Session

Components of a Namespace Template
A namespace template includes the following:

• Name of the namespace

The name of the application namespace uniquely identifies the namespace. This
name is used when creating the namespace in an application session.

• Namespace handler

The namespace handler is called when an attribute value is set or retrieved.
Specifying a handler is optional.

Namespaces can be associated with an event handling function. The server
invokes this function whenever an operation on an attribute registered for event
handling is performed. The event handling function is provided with the attribute
name, attribute value, and the event code as arguments. For example:

FUNCTION event_handling_function_name(
 session_id IN RAW,
 namespace IN VARCHAR2,
 attribute IN VARCHAR2,
 old_value IN VARCHAR2,
 new_value IN VARCHAR2,
 event_code IN PLS_INTEGER)
RETURNS PLS_INTEGER;

• Attribute List

The attribute list includes the attributes defined for the namespace. These
attributes are created in the session when the namespace is created.

You can specify the following optional data for attributes:

– The default value

The attribute is initialized with the default value when the namespace is
created in the application session. The default value and the event types
FIRSTREAD_EVENT and FIRSTREAD_PLUS_UPDATE_EVENT cannot exist at the
same time.

– Event types

Chapter 3
About Manipulating the Application Session State

3-16

You can specify the following event types for an attribute:

* FIRSTREAD_EVENT

Specify this event type to call the namespace handler when an attribute
whose value has not been set is read for the first time. You can specify
this event type only if a default value has not been set for the attribute.

* UPDATE_EVENT

Specify this event type to call the namespace handler when the attribute
value is updated.

* FIRSTREAD_PLUS_UPDATE_EVENT

Specify this event type to call the namespace handler when an attribute
whose value has not been set is read for the first time, or when its value is
updated. You can specify this event type only if a default value has not
been set for the attribute.

• Namespace ACL

The privilege model for namespace operations. Namespace operations are
protected by the ACL set on the template. By default, NS_UNRESTRICTED_ACL is set
on a template, which allows unrestricted operation on namespaces created from
the templates.

About Namespace Views
You can find information about namespace templates, namespace template attributes,
and namespace attributes in current and all application sessions by querying these
data dictionary views:

• "DBA_XS_NS_TEMPLATES"

• "DBA_XS_NS_TEMPLATE_ATTRIBUTES"

• "DBA_XS_SESSION_NS_ATTRIBUTES"

• "V$XS_SESSION_NS_ATTRIBUTES"

Creating a Namespace Template for an Application Session
You can create a namespace template using the XS_NAMESPACE.CREATE_TEMPLATE
procedure in PL/SQL or the createNamespace method of the Session interface in Java.

Example 3-12 shows how to create the namespace template ns1 for an application
session. It defines the attributes for this namespace using the list of attributes attrs.
Because this namespace template has NS_UNRESTRICTED_ACL set on the template, this
allows unrestricted operation on namespaces created from the template.

The calling user must have the ADMIN_ANY_SEC_POLICY application privilege, which
allows it to administer namespace templates and attributes.

Example 3-12 Creating a Namespace Template

DECLARE
 attrs XS$NS_ATTRIBUTE_LIST;
BEGIN
 attrs := XS$NS_ATTRIBUTE_LIST();
 attrs.extend(3);

 attrs(1) := XS$NS_ATTRIBUTE('attr1','value1',

Chapter 3
About Manipulating the Application Session State

3-17

 XS_NAMESPACE.UPDATE_EVENT);
 attrs(2) := XS$NS_ATTRIBUTE('attr2',null,
 XS_NAMESPACE.FIRSTREAD_PLUS_UPDATE_EVENT);
 attrs(3) := XS$NS_ATTRIBUTE('attr3','value3');

 SYS.XS_NAMESPACE.CREATE_TEMPLATE(name=>'ns1',
 description=>'namespace template 1',
 attr_list=>attrs,
 schema=>'SCOTT',
 package=>'PKG1',
 function=>'FN1',
 acl=>'SYS.NS_UNRESTRICTED_ACL');
END;
/

See Also:

• CREATE_TEMPLATE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java createNamespace method (in
Javadoc format)

• Example 6-10 for information about a Java example of this task

Initializing a Namespace in an Application Session
A namespace can be initialized, using a namespace template, during any of the
following events, as described in this section:

This section contains:

• Initializing a Namespace When the Session Is Created

• Initializing a Namespace When the Session Is Attached

• Initializing a Namespace When a Named Application User Is Assigned to an
Anonymous Application Session

• Initializing a Namespace When the Application User Is Switched in an Application
Session

• Initializing a Namespace Explicitly

Initializing a Namespace When the Session Is Created
When you create an application session using the DBMS_XS_SESSIONS.CREATE_SESSION
procedure in PL/SQL or the createSession method of the XSSessionManager class in
Java, you can specify a list of namespaces to initialize.

Example 3-13 shows how to initialize two namespaces, ns1 and ns2, while creating an
application session.

If you specify namespaces during creation of the session, the caller is required to be
granted application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the
namespaces, or be granted the ADMIN_NAMESPACE system privilege.

Chapter 3
About Manipulating the Application Session State

3-18

Note:

The namespaces used in Example 3-13 must already have corresponding
namespace templates defined.

Example 3-13 Initializing Namespaces When Creating an Application Session

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid, FALSE, FALSE, nsList);
END;
/

See Also:

• CREATE_SESSION Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java createSession method (in
Javadoc format)

• Example 6-2 for information about a Java example of this task

Initializing a Namespace When the Session Is Attached
When you attach the session using the DBMS_XS_SESSIONS.ATTACH_SESSION procedure
in PL/SQL or using the attachSession method of the XSSessionManager class in Java,
you can specify a list of namespaces to initialize.

Example 3-14 shows how to initialize two namespaces, ns1 and ns2, while attaching
an application session.

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the
ADMIN_NAMESPACE system privilege.

Note:

The namespaces used in Example 3-14 must already have corresponding
namespace templates defined.

Example 3-14 Initializing Namespaces When Attaching an Application Session

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);

Chapter 3
About Manipulating the Application Session State

3-19

BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid, NULL, NULL, NULL, NULL, nsList);
END;
/

See Also:

• ATTACH_SESSION Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java attachSession method (in
Javadoc format)

• Example 6-3 for information about a Java example of this task

Initializing a Namespace When a Named Application User Is Assigned to an
Anonymous Application Session

When you assign an application user to an application session using the
DBMS_XS_SESSIONS.ASSIGN_USER procedure in PL/SQL or the assignUser method of
the XSSessionManager class in Java, you can specify a list of namespaces to initialize.

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
ADMIN_NAMESPACE system privilege.

Example 3-15 shows how to initialize two namespaces, ns1 and ns2, while assigning
an application user to an application session.

Note:

The namespaces used in Example 3-15 must already have corresponding
namespace templates defined.

Example 3-15 Initializing Namespaces When Assigning an Application User to
an Application Session

DECLARE
 sessionid RAW(30);
 nsList DBMS_XS_NSATTRLIST;
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('XSGUEST', sessionid);
 SYS.DBMS_XS_SESSIONS.ASSIGN_USER(username => 'lwuser2',
 sessionid => sessionid,
 namespaces => nsList);
END;
/

Chapter 3
About Manipulating the Application Session State

3-20

See Also:

• ASSIGN_USER Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java assignUser method (in Javadoc
format)

• Example 6-5 for information about a Java example of this task

Initializing a Namespace When the Application User Is Switched in an
Application Session

When you switch an application user in an application session using the
DBMS_XS_SESSIONS.SWITCH_USER procedure in PL/SQL or using the switchUser
method of the Session interface in Java, you can specify a list of namespaces to
initialize.

If you specify namespaces, then the user is required to be granted application
privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or the
ADMIN_NAMESPACE system privilege.

Note:

To enable the switch from lwuser1 to lwuser2 after attaching the session,
you must first define lwuser2 as the target user for lwuser1, as follows:

exec XS_PRINCIPAL.ADD_PROXY_USER('lwuser2', 'lwuser1');

Example 3-16 shows how to initialize two namespaces, ns1 and ns2, while switching
an application user in an application session.

Note:

The namespaces used in Example 3-16 must already have corresponding
namespace templates defined.

Example 3-16 Initializing Namespaces When Switching an Application User in
an Application Session

DECLARE
 sessionid RAW(30);
 nsList DBMS_XS_NSATTRLIST;
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS. DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);

Chapter 3
About Manipulating the Application Session State

3-21

 SYS.DBMS_XS_SESSIONS.SWITCH_USER(username => 'lwuser2',
 namespaces => nsList);
END;
/

See Also:

• SWITCH_USER Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java switchUser method (in Javadoc
format)

• Example 6-6 for information about a Java example of this task

Initializing a Namespace Explicitly
You can explicitly initialize a namespace in an application session using the
DBMS_XS_SESSIONS.CREATE_NAMESPACE procedure in PL/SQL or the createNamespace
method of the Session interface in Java.

To execute the DBMS_XS_SESSIONS.CREATE_NAMESPACE procedure, the calling user
must have the MODIFY_NAMESPACE application privilege on the namespace or the
ADMIN_NAMESPACE system privilege.

Example 3-17 shows how to explicitly initialize a namespace, ns1, in an application
session.

Note:

The namespace used in Example 3-17 must already have a corresponding
namespace template defined.

Example 3-17 Initializing a Namespace Explicitly in an Application Session

DECLARE
 sessionid RAW(30);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
END;
/

Chapter 3
About Manipulating the Application Session State

3-22

See Also:

• CREATE_NAMESPACE Procedure for information about the syntax of
this PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java createNamespace method (in
Javadoc format)

• Example 6-10 for information about a Java example of this task

Setting Session Attributes in an Application Session
You can set the value of a specific session attribute using the
DBMS_XS_SESSIONS.SET_ATTRIBUTE procedure in PL/SQL or the setAttribute method
of the SessionNamespace interface method in Java.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege
on the namespace or the ADMIN_NAMESPACE system privilege.

Note:

An attribute can store a string value up to 4000 characters long.

Example 3-18 shows how to set a value, val1, for an attribute, attr1, of the
application session.

Example 3-18 Setting a Namespace Attribute for an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1', 'attr1', 'val1');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

Chapter 3
About Manipulating the Application Session State

3-23

See Also:

• SET_ATTRIBUTE Procedure for more information about the syntax of
this PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java setAttribute method (in
Javadoc format)

• About Setting a Session Namespace Attribute for information about this
task in Java

Getting Session Attributes in an Application Session
You can retrieve the value of a specific session attribute using the
DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure in PL/SQL or using the getAttribute
method of the SessionNamespace interface method in Java.

The calling user is not required to be granted any privileges to get attributes using the
DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

Note:

If an attribute value has not been set, and the FIRSTREAD_EVENT has been
specified for the attribute, then an attempt to read the the attribute value
triggers a call to the namespace event handler. The namespace event
handler procedure typically sets a value for the attribute, and performs other
application-specific processing tasks.

Example 3-19 shows how to retrieve an attribute, attr1, of the application session.

Example 3-19 Getting a Namespace Attribute for an Application Session

DECLARE
 sessionid RAW(16);
 attrib_out_val VARCHAR2(4000);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1', 'attr1', 'val1');
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('ns1', 'attr1', attrib_out_val);
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

Chapter 3
About Manipulating the Application Session State

3-24

See Also:

• GET_ATTRIBUTE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java getAttribute method (in
Javadoc format)

• Getting a Session Namespace Attribute for information about this task in
Java

Creating Custom Attributes in an Application Session
You can create custom attributes in a namespace using the
DBMS_XS_SESSIONS.CREATE_ATTRIBUTE procedure in PL/SQL or the createAttribute
method of the SessionNamespace interface method in Java.

Custom attributes differ from template attributes. Template attributes are part of the
namespace template, and are automatically created in the session when the
namespace is created. Custom attributes are programmatically created in a
namespace, using the CREATE_ATTRIBUTE procedure.

The calling application is required to be granted the MODIFY_ATTRIBUTE application
privilege on the namespace or the ADMIN_NAMESPACE system privilege.

Example 3-20 shows how to create a custom attribute, customattr, in a namespace of
the application session.

Example 3-20 Creating a Custom Namespace Attribute for an Application
Session

DECLARE
 sessionid RAW(16);
 attrib_out_val VARCHAR2(4000);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.CREATE_ATTRIBUTE('ns1','customattr','default_value_custom',NUL
L);
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1','customattr','newvalue');
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('ns1', 'customattr', attrib_out_val);
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

Chapter 3
About Manipulating the Application Session State

3-25

See Also:

• CREATE_ATTRIBUTE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java createAttribute method (in
Javadoc format)

• Example 6-13 for information about a Java example of this task

Deleting a Namespace in an Application Session
You can delete a namespace and all attributes identified by it from an application
session using the DBMS_XS_SESSIONS.DELETE_NAMESPACE procedure in PL/SQL or the
deleteAttribute method of the SessionNamespace interface method in Java.

The calling user must have the MODIFY_NAMESPACE application privilege on the
namespace or the ADMIN_NAMESPACE system privilege.

Example 3-21 shows how to delete a namespace ns1 from an application session.

Example 3-21 Deleting a Namespace in an Application Session

DECLARE
 sessionid RAW(16);
 out_value VARCHAR2(4000);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('ns1', 'attr1', 'val1');
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('ns1', 'attr1', out_value);
 SYS.DBMS_XS_SESSIONS.DELETE_NAMESPACE('ns1');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• DELETE_NAMESPACE Procedure for information about the syntax of
this PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java deleteNamespace method (in
Javadoc format)

• Example 6-11 for information about a Java example of this task

Chapter 3
About Manipulating the Application Session State

3-26

Enabling Application Roles for a Session
You can enable only directly granted regular application roles of an application session
user using the DBMS_XS_SESSIONS.ENABLE_ROLE procedure in PL/SQL or the
enableRole method of the Session interface in Java.

The DBA_XS_SESSION_ROLES dynamic data dictionary view lists application roles
enabled in all application sessions. The V$XS_SESSION_ROLES dynamic data dictionary
view lists application roles enabled in the currently attached application session.

Example 3-22 shows how to enable a role in an application session.

Example 3-22 Enabling a Role in an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ENABLE_ROLE('auth1_role');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);
END;
/

See Also:

• ENABLE_ROLE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about the syntax of the Java enableRole method (in Javadoc
format)

• Example 6-7 for information about a Java example of this task

Disabling Application Roles for a Session
You can disable application roles for a specific session using the
DBMS_XS_SESSIONS.DISABLE_ROLE procedure in PL/SQL or the disableRole method of
the Session interface in Java.

Example 3-23 shows how to disable a role in an application session.

Example 3-23 Disabling a Role in an Application Session

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ENABLE_ROLE('auth1_role');
 SYS.DBMS_XS_SESSIONS.DISABLE_ROLE('auth1_role');
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION(sessionid);

Chapter 3
About Manipulating the Application Session State

3-27

END;
/

See Also:

• DISABLE_ROLE Procedure for information about the syntax of this
PL/SQL procedure

• Oracle Database Real Application Security Java API Reference for
information about t he syntax of the Java disableRole method (in
Javadoc format)

• Example 6-8 for information about a Java example of this task

About Administrative APIs for External Users and Roles
This section describes the following administrative APIs that are required for external
users and roles:

• CREATE_SESSION Procedure

• ATTACH_SESSION Procedure

• ASSIGN_USER Procedure

• SAVE_SESSION Procedure

About Real Application Security Session Privilege Scoping
Through ACL

Describes session privilege scoping through an ACL allowing per principal session
privilege grants through an ACL set on the principal, where the principal can be either
an application user or a dynamic role.

In Oracle Database 12c Release 1 (12.1), Real Application Security session privileges
are granted through GRANT_SYSTEM_PRIVILEGE procedure or revoked through
REVOKE_SYSTEM_PRIVILEGE procedure in the XS_ADMIN_UTIL package. These grants
are applicable system wide and allow the grantee to exercise the grants for session
operations on any Real Application Security principal. This is implemented using a
seeded system ACL – SESSIONACL. All session privilege checks are done in this ACL.
For a database running multiple applications with multiple user communities this
approach becomes cumbersome to administer Real Application Security session
administration appropriately.

Session privilege scoping addresses two issues. The first issue is who can create,
attach, detach, or destroy a user’s session. The second issue is who can enable a
dynamic role for a user session. Because a dynamic role can never be granted and
can only be dynamically enabled, session privilege scoping through an ACL is needed.
Because regular roles are granted to application users, an ACL is not needed on them.

Beginning with Oracle Database 12c Release 2 (12.2), Real Application Security
supports session privilege scoping through an ACL. This feature allows per principal
session privilege grants through an ACL set on the principal. The ACL containing the

Chapter 3
About Administrative APIs for External Users and Roles

3-28

session privilege grant can be set on a regular Real Application Security application
user or a dynamic role, but it cannot be set on a regular Real Application Security role
or external principal. Because Real Application Security session scoping can be
enforced per the ACL set on the application user or dynamic role involved in a session
operation, you can more finely restrict session operations to specific user
communities. For example, you can set up a session operation for a separate user
community that can be managed by separate session managers (dispatchers), so
users belonging to the same user community will have the same ACL set on them. In
addition, enabling and disabling of a dynamic role can be restricted to appropriate
dispatchers with the addition of a new privilege ENABLE_DYNAMIC_ROLE to restrict
enablement and disablement of dynamic roles. This privilege is enforced even for
enabling existing session scope dynamic roles from previous attach. With these
features, the Real Application Security session administrator can provide a scoping for
session privileges that allows a user to create or attach or modify sessions for one
Real Application Security user community or a group of Real Application Security user
communities for which it has been granted privilege.

The ACL can be set on the principal at creation time using the Real Application
Security least system privilege PROVISION, which can create, modify, or drop
application users and application roles. In addition, you can also use the CREATE_USER
procedure and CREATE_DYNAMIC_ROLE procedure and this requires the caller to have
ALTER USER or ALTER ROLE privilege depending on the principal being created; or the
ACL can be created after principal creation using the SET_ACL procedure, which
requires the caller to have the same privilege as previously mentioned depending on
whether the principal is an application user or dynamic role. Both the application user
or dynamic role and ACL must already exist before setting the ACL using the SET_ACL
procedure and the ACL must have been created in the SYS schema.

Session operations require either specific session privileges to be granted to the
session manager depending on the session operation by either a system-wide ACL or
an ACL attached to the affected user or role. The ADMINISTER_SESSION privilege
aggregates all specific session privileges. Like all session privileges, this privilege can
be granted to the session manager by either a system-wide ACL or principal specific
ACL. The use of new privileges is audited like other system privileges. An ACL set on
a user or dynamic role overrides the system-wide ACL.

The DBA_XS_USERS and DBA_XS_DYNAMIC_ROLES views are enhanced to show an
additional column for the ACL that is set on the Real Application Security application
user or dynamic role.

System level session privilege grants can coexist with the principal specific ACL, but
the principal specific ACL grants have precedence. This precedence is important as
Real Application Security principal specific ACLs can have negative grants. Note that
the negative grant can only appear in principal specific ACLs not for the system ACL.

The following table describes the behavior of a session privilege check comparing the
principal specific ACL (column 1) with the System ACL (column 2) and showing the
result of the session privilege check (column 3) as being either True or False. For
example, when the checked privilege is neither granted or denied in a principal specific
ACL, then the System ACL is checked for the privilege.

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-29

Table 3-2 Session Privilege Checking

Principal Specific ACL System ACL Session Privilege Check
Result

Grant Deny, grant, or not specified True

Deny Deny, grant, or not specified False

Not specified or ACL does not
exist

Grant True

Not specified or ACL does not
exist

Not specified. False

Enforcing Session Privilege According to the ACL Set on the Principal

Session privilege is enforced according to the ACL set on the Real Application
Security application user in the session operation. A privilege to enable a dynamic role
is enforced according to the ACL set on the dynamic role. For example, a create
session operation requires the caller to have the CREATE_SESSION privilege in the ACL
set on the Real Application Security application user. Similarly, the attach operation
with dynamic role requires the ENABLE_DYNAMIC_ROLES privilege in the ACLs set on the
dynamic roles. Any existing system level session privilege grants as mentioned
previously can still coexist, but the principal specific ACL grants gets precedence.

Privilege check is first done in the ACL associated with the principal (if at all there are
such settings). If the ACL check succeeds the operation will go through. If the check
finds deny, the operation fails with insufficient privilege error. If neither grant nor deny
is found, the check is done in system ACL associated with SESSION_SC security
class and operation fails or succeeds based on this privilege check result.

The following table lists Real Application Security session operations and the required
session privileges to perform that operation. This information is useful for creating
ACLs on principals for specific session operations. Note that the ADMINISTER_SESSION
privilege aggregates all session privileges listed in this table.

Table 3-3 Session Privilege Operations and the Required Privileges to Perform
Them

Session Operations Required Session Privilege

Create Session CREATE_SESSION privilege in the ACL set on
the Real Application Security application user
(that is used for creating the session) or in the
System ACL. If there is a negative grant in the
principal specific ACL, the operation fails.

Attach Session ATTACH_SESSION privilege in the ACL set on
the Real Application Security application user
(that is used for creating the session) or in the
System ACL. ENABLE_DYNAMIC_ROLE
privilege in the ACL set on the dynamic roles
(that is used for creating the session) or in the
System ACL. If there is a negative grant in the
principal specific ACL, the operation fails.

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-30

Table 3-3 (Cont.) Session Privilege Operations and the Required Privileges to
Perform Them

Session Operations Required Session Privilege

Assign User ASSIGN_SESSION privilege in the ACL set on
the named Real Application Security
application user to be assigned or in the
System ACL. ENABLE_DYNAMIC_ROLE
privilege in the ACL set on the dynamic roles
(that is used for creating the session) or in the
System ACL. So if there are dynamic roles
enabled, these privileges are checked. If there
is a negative grant in the principal specific
ACL, the operation fails.

Switch User No session privilege check, as per proxy
configuration.

Enable Role No session privilege check.

Disable Role No session privilege check.

Namespace Operation (Create Namespace,
delete namespace, create attribute, set
attribute, reset attribute, delete attribute)

No session privilege check, only namespace
privilege checks.

Save Session, Detach Session No session privilege check.

Destroy Session TERMINATE_SESSION privilege in the ACL set
on the Real Application Security application
user (that is used for creating the session) or
in the System ACL.

Set Session Cookie MODIFY_SESSION privilege in the ACL set on
the Real Application Security application user
(that is used for creating the session) or in the
System ACL.

Set Inactivity Timeout MODIFY_SESSION privilege in the ACL set on
the Real Application Security application user
(that is used for creating the session) or in the
System ACL.

Reauthorize Session MODIFY_SESSION privilege in the ACL set on
the Real Application Security application user
(that is used for creating the session) or in the
System ACL.

Get SID from Cookie No session privilege check.

Global Callback Configuration (Add global
callback, delete global callback, enable global
callback)

No session privilege check, only callback
privilege checks.

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-31

See Also:

• GRANT_SYSTEM_PRIVILEGE Procedure and
REVOKE_SYSTEM_PRIVILEGE Procedure

• Security Classes

• CREATE_USER Procedure, CREATE_DYNAMIC_ROLE Procedure,
and SET_ACL Procedure

• DBA_XS_USERS and DBA_XS_DYNAMIC_ROLES

Granting Session Privileges on a Principal Using an ACL
Describes how to grant session privileges on a principal using an ACL while creating
the user and after the user is already created.

The following examples show how to grant session privileges to principals through an
ACL, USER_ACL while creating the user and after the user is already created.

First, create the ACL USER_ACL and grant the privilege ADMINISTER_SESSION to user
lwuser3 and grant the privileges CREATE_SESSION, MODIFY_SESSION, and
ATTACH_SESSION to user lwuser4 and grant the privileges CREATE_SESSION and
MODIFY_SESSION to user lwuser5.

sqlplus /nolog
SQL> CONNECT SYS/password as SYSDBA
SQL> GRANT CREATE SESSION, XS_SESSION_ADMIN TO SEC_MGR IDENTIFIED BY
password;
SQL> EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('PROVISION', 'sec_mgr',
SYS.XS_ADMIN_UTIL.PTYPE_DB);

CONNECT SEC_MGR
Enter password: password
Connected.

DECLARE
ace_list XS$ACE_LIST;

BEGIN

ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"ADMINISTER_SESSION"'),
 granted=>true,
 principal_name=>'lwuser3'),

XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"CREATE_SESSION"','"MODIFY_SESSIO
N"','"ATTACH_SESSION"'),
 granted=>true,
 principal_name=>'lwuser4'),

XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"CREATE_SESSION"','"MODIFY_SESSIO

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-32

N"'),
 granted=>true,
 principal_name=>'lwuser5'));

sys.xs_acl.create_acl(name=>'USER_ACL',
 ace_list=>ace_list,
 sec_class=>'SESSIONPRIVS',
 description=>'Session management');
END;
/

Next, create users lwuser3 and lwuser4 and grant these users the ACL, USER_ACL.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'lwuser3',
 schema=>'HR',
 acl=>'USER_ACL';
END;
/
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('lwuser3', 'password');

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'lwuser4',
 schema=>'HR',
 acl=>'USER_ACL';
END;
/
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('lwuser4', 'password');

Next, create user lwuser5 and set the ACL, USER_ACL, for this user using the SET_ACL
procedure.

sqlplus SEC_MGR
Enter password: password
Connected.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'lwuser5',
 schema=>'HR');
END;
/
EXEC SYS.XS_PRINCIPAL.SET_ACL('lwuser5','USER_ACL');

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-33

See Also:

• GRANT_SYSTEM_PRIVILEGE Procedure and
REVOKE_SYSTEM_PRIVILEGE Procedure

• Security Classes

• CREATE_USER Procedure, CREATE_DYNAMIC_ROLE Procedure,
and SET_ACL Procedure

• DBA_XS_USERS and DBA_XS_DYNAMIC_ROLES

Chapter 3
About Real Application Security Session Privilege Scoping Through ACL

3-34

4
Configuring Application Privileges and
Access Control Lists

This chapter describes how to configure application privileges and access control lists
(ACLs) in Oracle Database Real Application Security. It includes information on how to
create, set, and modify ACLs, and describes how ACL security interacts with other
Oracle Database security mechanisms.

This chapter contains the following sections:

• About Application Privileges

• About Configuring Security Classes

• About Configuring Access Control Lists

• Data Security

• ACL Binding

About Application Privileges
The database has predefined system privileges, such as CREATE TABLE, and object
privileges, such as UPDATE. A large number of custom privileges that must be defined
for enterprise applications are often called application-defined privileges. Real
Application Security introduces the definition of these privileges, termed application
privileges, in the database. For application developers, these custom application
privileges are used for access control on application-level operations. These
application-level operations allow fine-grained access on data at a granular level of
columns, rows, or cells.

When an application privilege is explicitly bound to a resource, for example, rows and
columns of a table, an application privilege can be used to protect an application-level
operation on a database object. Alternatively, it may be used in the same manner as a
system privilege when binding to a resource is not required.

See Also:

About Checking ACLs for a Privilege

This section contains the following topic: Aggregate Privilege.

Aggregate Privilege
A Real Application Security aggregate privilege implies a set of other application
privileges. The implied application privileges of an aggregate privilege can be any
application privilege defined by the current security class or an inherited application
privilege (see "About Configuring Security Classes" for more information). When an

4-1

aggregate privilege is granted or denied, its implied application privileges are implicitly
granted or denied.

When an aggregate privilege AG implies the application privileges p1 and p2, granting
the application privilege, AG, implies that both p1 and p2 are granted. However,
granting both the p1 and p2 does not imply that AG is granted.

Aggregate privileges are useful for the following purposes:

• Enabling grouping and granting a set of application privileges as a single grant,
simplifying application privilege administration. A group name or an alias for a set
of application privileges, where the group name itself is not an application
privilege, makes checking for the set simpler as it checks for each application
privilege in the group.

• Providing an efficient way to check a set of application privileges based on a single
application privilege check.

Example 4-1 adds an aggregate privilege called UPDATE_INFO to the HRPRIVS security
class. The aggregate privilege contains the implied privileges UPDATE, DELETE, and
INSERT.

When the group name itself is a first class privilege, there may be several possible
semantics for the aggregate privilege based on its relationship to its members. When
defining a semantic to represent an aggregate privilege, you must consider various
relations between the aggregate privilege and its members, such as imply and include.
For example, consider the imply relation in Java Security; selecting this semantic when
granting an aggregate privilege implies granting all its member application privileges
individually, but not the aggregate privilege. Therefore, granting all the member
application privileges of an aggregate does not imply granting the aggregate privilege.

Example 4-2 adds a list of implied application privileges for the aggregate privilege
UPDATE_INFO.

An aggregate privilege is not an application role. An application role itself is not an
application privilege that protects a resource. Application roles are used to activate
and deactivate application privileges available to an application user to enforce role-
based access control constraints.

Also, an aggregate privilege is not a security class. A security class is not an
application privilege that can be granted to a user. A security class lists a set of
application privileges including aggregate privileges that may be either granted or
denied in an ACL. Within a security class, many aggregate privileges may be defined
based on the application privileges available in the security class.

An aggregate privilege can have other aggregate privileges as its members. Note that
the member privileges of an aggregate privilege must be defined in the same security
class (or in an ancestor security class) as the aggregate privilege. An aggregate
privilege definition cannot create a cycle.

Example 4-1 Adding an Aggregate Privilege to a Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES(sec_class=>'HRPRIVS',
 priv=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST('"UPDATE"',
 '"DELETE"', '"INSERT"'));
END;

Chapter 4
About Application Privileges

4-2

Example 4-2 Adding Implied Privileges to an Aggregate Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES(sec_class =>'HRPRIVS',
(priv=>'UPDATE_INFO',
implied_priv_list=>XS$NAME_LIST('"UPDATE"', '"DELETE"', '"INSERT"'));
END;

This section contains: ALL Privilege.

ALL Privilege
The ALL privilege is a predefined aggregate privilege. Every security class has the ALL
privilege, and it contains all the application privileges of that security class. ALL is not
explicitly defined in every security class, but it is internally understood by the system
based on the security class associated with the ACL. The cardinality of an ALL for a
security class changes whenever an application privilege is added or removed from
the security class.

Use of the ALL construct enables Real Application Security to express access control
policy such as "grant all the application privileges to the application user u1 defined for
an application except the specific privilege p1". Example 4-3 shows an ACL in the
security class, AppSecurityClass, which has all the application privileges for the
application. The ordered evaluation of ACEs ensures that the ALL except p1 is granted
to the application user u1.

Example 4-3 Using ALL Grant

select NAME, SECURITY_CLASS, PARENT_ACL from DBA_XS_ACLS;

NAME SECURITY_CLASS PARENT_ACL
---------- ---------------- ---------------
sampleACL AppSecurityClass

select ACL, ACE_ORDER, GRANT_TYPE, PRINCIPAL, PRIVILEGE from DBA_XS_ACES;

ACL ACE_ORDER GRANT_TYPE PRINCIPAL PRIVILEGE
--------- --------- ---------- ------------ ----------
sampleACL 1 DENY U1 p1
sampleACL 2 GRANT U1 ALL

About Configuring Security Classes
This section contains the following topics:

• About Security Classes

• Security Class Inheritance

• Security Class as Privilege Scope

• DML Security Class

• About Validating Security Classes

• Manipulating Security Classes

Chapter 4
About Configuring Security Classes

4-3

About Security Classes
A security class is a scope for a set of application privileges. The same application
privilege can be defined in multiple security classes. A security class restricts the set of
application privileges that may be granted or denied within an ACL. A security class is
both a place to define a collection of relevant application privileges and a way to
associate an ACL with one security class.

Real Application Security supports a set of predefined application privileges and
security classes and also allows applications to define their own custom application
privileges using security classes. Each class of object being protected is associated
with a security class that indicates the set of operations that may be performed on its
objects. There are predefined security classes that define built-in application
privileges.

Security classes simplify the task of managing a large number of application privileges.
Each ACL is associated with one security class. This security class defines the scope
of application privileges that may be granted within the ACL.

Each object type can support a large number of application privileges, and many
different object types may share a common set of operations. To simplify these types
of specifications, security classes support inheritance.

Security Class Inheritance
A security class can inherit application privileges from parent security classes. A child
security class implicitly contains all the application privileges defined in the parent
security classes. The application privileges available in a security class are the
combination of the application privileges defined in the security class and the
application privileges inherited from parent security classes.

A security class can specify a list of parent security classes. The application privileges
available in these parent classes become available in the child class. When the same
application privilege name is defined in a child and its parent security class, the
application privilege in the child replaces or overrides the application privilege in the
parent.

Example 4-4 shows security class inheritance by creating a security class called
HRPRIVS. The HRPRIVS security class defines two application privileges,
VIEW_SENSITIVE_INFO and UPDATE_INFO. UPDATE_INFO, which is an aggregate privilege
that implies three other privileges: UPDATE, DELETE, and INSERT. The security class
HRPRIVS inherits application privileges from DML security class as specified by the
parent_list parameter.

Example 4-4 Showing Security Class Inheritance

 DECLARE
 pr_list XS$PRIVILEGE_LIST;
BEGIN
 pr_list :=XS$PRIVILEGE_LIST(
 XS$PRIVILEGE(name=>'VIEW_SENSITIVE_INFO'),
 XS$PRIVILEGE(name=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST
 ('"UPDATE"', '"DELETE"', '"INSERT"')));

 sys.xs_security_class.create_security_class(

Chapter 4
About Configuring Security Classes

4-4

 name=>'HRPRIVS',
 parent_list=>XS$NAME_LIST('DML'),
 priv_list=>pr_list);
END;
/

Security Class as Privilege Scope
An ACL has a single security class as its scope. An ACL grants application privileges
to principals to control access to protected data or functionality; it can grant only the
application privileges that are defined in its security class. The security_class
parameter is used to specify the security class in an ACL. When checking an
application privilege against an ACL, the security class of the application privilege is
resolved based on the security class of the ACL, as the ACL always has an associated
security class. If no security class is specified, then the DML Security Class is used as
the default security class. Different ACLs can have as their scope the same security
class.

DML Security Class
The DML security class is predefined or created during installation. The DML security
class contains common application privileges for object manipulation: SELECT, INSERT,
UPDATE, and DELETE. If an ACL does not specify its security class, DML is the default
security class for the ACL.

Real Application Security DML application privileges are the same as database object
privileges and inherently enforced by database object-level operations. However, Real
Application Security DML application privileges are effective only when Real
Application Security Data Security is enabled for database tables.

About Validating Security Classes
Oracle recommends that you always validate the Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of
validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects.

See "VALIDATE_SECURITY_CLASS Function" for more information about validating
a security class.

Manipulating Security Classes
To manipulate security classes, use the procedures in PL/SQL package
XS_SECURITY_CLASS; it includes procedures to create, manage, and delete security
classes and their application privileges. This package also includes procedures for
managing security class inheritance; see "XS_SECURITY_CLASS Package".

Example 4-5 invokes ADD_PARENTS to add the parent security class GENPRIVS to the
HRPRIVS security class.

Example 4-6 invokes REMOVE_PARENTS to remove the parent security class GENPRIVS
from the HRPRIVS security class.

Example 4-7 invokes ADD_PRIVILEGES to add an aggregate privilege called
UPDATE_INFO to the HRPRIVS security class. The aggregate privilege contains the

Chapter 4
About Configuring Security Classes

4-5

implied privileges UPDATE, DELETE, and INSERT. Note that ADD_PRIVILEGES may be
used to add several application privileges to a security class. See "Aggregate
Privilege" for more information.

Example 4-8 invokes REMOVE_PRIVILEGES to remove the UPDATE_INFO application
privilege from the HRPRIVS security class.

Example 4-9 invokes REMOVE_PRIVILEGES to remove all application privileges from the
HRPRIVS security class.

Example 4-10 invokes ADD_IMPLIED_PRIVILEGES to add a list of implied application
privileges for the aggregate privilege UPDATE_INFO.

Example 4-11 invokes REMOVE_IMPLIED_PRIVILEGES to remove the implicit privilege
DELETE from the aggregate privilege UPDATE_INFO.

Example 4-12 invokes REMOVE_IMPLIED_PRIVILEGES to remove all implicit application
privileges from the aggregate privilege UPDATE_INFO.

The procedure sets a description string for the specified security class. Example 4-13
invokes SET_DESCRIPTION to set a description string for the HRPRIVS security class.

Example 4-14 invokes DELETE_SECURITY_CLASS to delete the HRACL ACL using the
default delete option DEFAULT_OPTION. Note that this option is defined in
"XS_ADMIN_UTIL Package".

Example 4-5 Adding Parent Security Classes for a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PARENTS('HRPRIVS','GENPRIVS');
END;

Example 4-6 Removing One or More Parent Classes for a Specified Security
Class

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PARENTS('HRPRIVS','GENPRIVS');
END;

Example 4-7 Adding One or More Application Privileges to a Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES(sec_class=>'HRPRIVS',
 priv=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST('"UPDATE"',
 '"DELETE"', '"INSERT"'));
END;

Example 4-8 Removing One or More Application Privileges from a Specified
Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS','UPDATE_INFO');
END;

Example 4-9 Removing all Application Privileges for a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS');
END;

Chapter 4
About Configuring Security Classes

4-6

Example 4-10 Adding One or More Implied Application Privileges to an
Aggregate Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES(priv=>'UPDATE_INFO',

implied_priv_list=>XS$NAME_LIST('"UPDATE"', '"DELETE"', '"INSERT"'));
END;

Example 4-11 Removing a Specified Implied Application Privileges from an
Aggregate Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('UPDATE_INFO','"DELETE"');
END;

Example 4-12 Removing all Implied Application Privileges from an Aggregate
Privilege

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('UPDATE_INFO');
END;

Example 4-13 Setting a Description String for a Specified Security Class

BEGIN
 SYS.XS_SECURITY_CLASS.SET_DESCRIPTION(
 'HRPRIVS','Contains privileges required to manage HR data');
END;

Example 4-14 Deleting a Specified Security Class

BEGIN

SYS.XS_SECURITY_CLASS.DELETE_SECURITY_CLASS('HRPRIVS',XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

About Configuring Access Control Lists
This section contains the following topics:

• About ACLs and ACEs

• Creating ACLs and ACEs

• About Validating Access Control Lists

• Updating Access Control Lists

• About Checking ACLs for a Privilege

• About Using Multilevel Authentication

• Principal Types

• Access Resolution Results

• ACE Evaluation Order

• ACL Inheritance

• About ACL Catalog Views

• About Security Class Catalog Views

Chapter 4
About Configuring Access Control Lists

4-7

About ACLs and ACEs
Real Application Security encompasses access control lists (ACLs) and supports
grants, denials, and various conflict resolution methods. ACLs are extended to support
application-defined privileges, enabling applications to control privileges that are
meaningful to it. Authorization queries are of the form: "Is the application user
authorized for privilege p in ACL a?" Application-defined privileges are implemented
through APIs supported both in the middle tier and in the database. These APIs
enable the application to protect sensitive operations, such as approval of purchase
orders.

Before performing a sensitive operation, the application must determine the required
application privileges. For example, if the application requires the approvePO
application privilege, it must locate the ACL associated with the desired purchase
order, a1, and issue a query to determine if the Real Application Security session is
authorized for application privilege approvePO in a1. Note that the application must be
trusted to properly carry out authorization. Data security improves this by providing a
declarative method of associating ACLs with rows in a table; a data security policy
allows an administrator or developer to identify a set of rows in a table using an SQL
predicate and associates the set with the ACL that is used to control access to its
member rows.

The data security system provides a SQL operator that returns the ACLs associated
with a row. This SQL operator performs an authorization check using the ACL
references associated with the row. By default, a query returns all rows the user is
allowed to view; these ACL references may be used in the middle tier to determine
appropriate access for a particular row, as arguments in a WHERE clause that limits the
result set. Thus, the result set may be further restricted to display only those rows for
some specific operations, such as approvePO, based on the user's authorization.

The Real Application Security system provides native enforcement for SQL operations
in the database, limiting the scope for damage due to security errors in the application.
Thus, a SQL injection attack in one part of the application will not provide access to
tables outside of that component.

An ACL protects a resource by specifying application privileges of the principals on the
resource. An ACL is a list of access control entries (ACEs) where each ACE maintains
the mapping from a principal to a granted or denied application privileges for the
resource. A principal may be a database user or Real Application Security application
user or application role.

Access Control Entry or ACE

An access control entry, or ACE, represents an application privilege grant, and an
ACL represents a set of application privilege grants that are bound to a resource.
Here, the resource can be a database table, a column in a table, or a set of rows in a
table selected using a SQL predicate. Hence when a resource is accessed, only the
ACLs associated with the resource are checked for the access right.

An ACE either grants or denies access to some application function or other database
data for a particular principal. The ACE does not, itself, specify which data to protect;
that is done outside the ACE and the ACL, by associating the ACL with target data.

XS$ACE_TYPE type is provided to construct each ACE entry for the ACL. An
XS$ACE_LIST object consists of a list of privileges and the principal to whom the

Chapter 4
About Configuring Access Control Lists

4-8

privileges are granted or denied. ACEs related information can be accessed through
DBA_XS_ACES view.

Creating ACLs and ACEs
Example 4-15 creates an ACL called HRACL. This ACL includes ACEs contained in
ace_list. The application privileges used in ace_list are available in the HRPRIVS
security class. The st_date and en_date parameters specify the active start and end
times for this ACL; note that only the SELECT and VIEW_SENSITIVE_INFO application
privileges are temporary.

Example 4-15 Creating an Access Control List

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 en_date TIMESTAMP WITH TIME ZONE;
 ace_list XS$ACE_LIST;
BEGIN
 st_date := SYSTIMESTAMP;
 en_date := TO_TIMESTAMP_TZ('2019-06-18 11:00:00 -5:00',
 'YYYY-MM-DD HH:MI:SS TZH:TZM');
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'HRREP',
 start_date=>st_date,
 end_date=>en_date),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>true,
 principal_name=>'HRMGR'),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'DB_HR', principal_type=>XS_ACL.PTYPE_DB));

 sys.xs_acl.create_acl(name=>'HRACL',
 ace_list=>ace_list,
 sec_class=>'HRPRIVS',
 description=>'HR Representative Access');
END;
/

Each ACE includes a principal that is the target of the grant and a list of application
privileges. The grant is subject to the following attributes described in these topics:

• Deny

• Invert

• ACE Start-Date and End-Date

Deny
When a grant is negated, the application privileges are denied. Example 4-16 sets the
value of the attribute granted to FALSE to deny application privileges to the principal.
The default value is TRUE.

Real Application Security ACL supports only the ordered evaluation of ACEs. The first
ACE that grants or denies the requested application privilege contributes toward the
final grant or deny. See section "DBA_XS_ACES".

Chapter 4
About Configuring Access Control Lists

4-9

Example 4-16 Denying a Privilege

XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>FALSE,
 principal_name=>'HRREP'
);

Invert
When the specified application privileges are given to all principals except one, that
principal is inverted; the inverted attribute is set to TRUE. The default value of the
attribute inverted is FALSE. In Example 4-17, a grant made to the inverted role
HRGUEST provides the application privileges to any user that does not have the role
enabled.

Example 4-17 Inverting an Application Privilege

XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 inverted=>TRUE,
 principal_name=>'HRGUEST'
);

ACE Start-Date and End-Date
Each ACE can have a time constraint based on a start-date and an end-date,
specifying the time when the ACE is in effect.

In Example 4-18, the optional attributes start_date and end_date (of datatype
TIMESTAMP WITH TIME ZONE) define the time period over which an ACE is valid. The
end_date value must be greater than the start_date value.

Example 4-18 Setting ACE Start-Date and End-Date

XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'HRREP',
 start_date=>st_date,
 end_date=>en_date))

About Validating Access Control Lists
Oracle recommends that you always validate the Real Application Security objects
after administrative configuration changes. The XS_DIAG package provides a set of
validation APIs to help ensure that these changes do not damage the complicated
relationships among your Real Application Security objects.

See "VALIDATE_ACL Function" for more information about validating an ACL.

Updating Access Control Lists
To manipulate ACLs, use the procedures in PL/SQL package XS_ACL; it contains
procedures that create and manage ACLs. See "XS_ACL Package".

Example 4-19 invokes APPEND_ACES to add an ACE, ace_entry, to the HRACL ACL. The
ACE grants the SELECT privilege to the DB_HR database user.

Chapter 4
About Configuring Access Control Lists

4-10

Example 4-20 invokes REMOVE_ACES to remove all ACEs from the ACL called HRACL.

The procedure sets or modifies the security class for an ACL. Example 4-21 invokes
SET_SECURITY_CLASS procedure to associate the HRPRIVS security class with ACL
HRACL.

Example 4-22 invokes SET_PARENT_ACL to set the AllDepACL ACL as the parent ACL
for the HRACL ACL. The inheritance type is set to EXTEND.

Example 4-23 invokes REMOVE_ACL_PARAMETERS to remove all ACL parameters for
ACL1.

Example 4-24 invokes REMOVE_ACL_PARAMETERS to remove the REGION parameter for
ACL1.

Example 4-25 invokes SET_DESCRIPTION to set a description for ACL HRACL.

Example 4-26 invokes DELETE_ACL to delete ACL HRACL using the default delete option.

Example 4-19 Appending an ACE to an Access Control List

DECLARE
 ace_entry XS$ACE_TYPE;
BEGIN
 ace_entry := XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'DB_HR',
 principal_type=>XS_ACL.PTYPE_DB);
 SYS.XS_ACL.APPEND_ACES('HRACL',ace_entry);
END;

Example 4-20 Removing all ACEs from an ACL

BEGIN
 SYS.XS_ACL.REMOVE_ACES('HRACL');
END;

Example 4-21 Modifying the Security Class for an ACL

BEGIN
 SYS.XS_ACL.SET_SECURITY_CLASS('HRACL','HRPRIVS');
END;

Example 4-22 Setting or Modifying the Parent ACL

BEGIN
 SYS.XS_ACL.SET_PARENT_ACL('HRACL','AllDepACL',XS_ACL.EXTENDED);
END;

Example 4-23 Removing all ACL Parameters for an ACL

BEGIN
 SYS.XS_ACL.REMOVE_ACL_PARAMETERS('ACL1');
END;

Example 4-24 Removing the Specified ACL Parameter for an ACL

BEGIN
 SYS.XS_ACL.REMOVE_ACL_PARAMETERS('ACL1','REGION');
END;

Chapter 4
About Configuring Access Control Lists

4-11

Example 4-25 Setting a Description String for an ACL

BEGIN
 SYS.XS_ACL.SET_DESCRIPTION('HRACL',
 'Grants privileges to HR representatives and managers.');
END;

Example 4-26 Deleting an ACL

BEGIN
 SYS.XS_ACL.DELETE_ACL('HRACL');
END;

About Checking ACLs for a Privilege
There are two forms of enforcement; the system enforces DML privileges on data
security protected objects, and the SQL operator added by the user enforces all other
application privileges.

To check an ACL for an application privilege, call the SQL operator ORA_CHECK_ACL:

ORA_CHECK_ACL (acls, privilege [,privilege] ...)

The ORA_CHECK_ACL SQL operator evaluates the list of application privileges with
respect to an ordered list of ACLs. The evaluation process proceeds until any one of
the following three events occurs:

• A grant is encountered for every application privilege specified before any potential
denials of the same application privilege. The outcome is that the application
privileges are granted.

• One of the application privileges specified is denied before any potential grants.
The outcome is that at least one of the application privileges is denied.

• The list of ACEs is fully traversed. The outcome is that not all of the application
privileges are granted.

To evaluate the application privilege, Oracle checks the ACEs (which are kept in
order), and the evaluation stops when it finds an ACE that grants or denies the
requested application privileges.

To find the ACLs associated with rows of a table or view, call the SQL operator
ORA_GET_ACLIDS: ORA_GET_ACLIDS(table, ...). For example, to enforce an
application privilege, priv, on a table, tab, the user query adds the following check:

ORA_CHECK_ACL(ORA_GET_ACLIDS(tab), priv)

This function answers the question whether application privileges were granted,
denied, or neither. A corresponding Java API is also available.

About Using Multilevel Authentication
Multilevel authentication enables the user to specify, through system-constraining
ACLs, application privileges based on levels of authentication. A system-
constraining ACL specifies a minimum application-wide set of application privileges
on objects, based on dynamic roles that reflect an application user's level of
authentication. When attempting to access an object, an application user may be
either strongly or weakly authenticated, either inside or outside the firewall, with the
following four possible levels of authentication:

Chapter 4
About Configuring Access Control Lists

4-12

• Strongly authenticated, inside firewall

• Strongly authenticated, outside firewall

• Weakly authenticated, inside firewall

• Weakly authenticated, outside firewall

A system-constraining ACL can specify application privileges that apply to application
users at each level of authentication in an application. Based on application
requirements, the administrator may grant additional application privileges to specific
users based on any necessary criteria; such additional application privileges are
independent of any system-constraining ACL. Example 4-28 and Example 4-29
implement a system-constraining ACL.

Principal Types
In addition to Real Application Security principals, application users and application
roles, Real Application Security supports grants based on database users and roles.
When the system evaluates an ACL in a context of a Real Application Security
session, it ignores grants that are based on a database schema, but honors grants
that are based on database role because they are part of Real Application Security
user's role list. Within an ACL, multiple ACEs can grant privileges to a principal.

Access Resolution Results
Requests for access can have two possible results: true or false.

• A result of true means that the requested application privilege is granted

• A result of false means that the requested application privilege is either not
granted or denied.

ACE Evaluation Order
ACEs are evaluated in the order they appear in the ACL. The outcome of evaluating a
particular ACE may be one of the following:

• The application privilege is granted.

• The application privilege is denied.

• The application privilege is neither granted nor denied.

Note that if an ACE grants an application privilege that a previous ACE denies, the
result is a deny because the ACEs are evaluated in order.

ACL Inheritance
ACLs can explicitly inherit from a single parent ACL, enabling the application to share
policies across multiple objects. When the request for an application privilege involves
two ACLs, the final result of the access-resolution algorithm may be based on
semantics of individual access-resolution results of the ACLs. Real Application
Security supports two types of inheritance semantics: extending ACL inheritance (OR
with ordered evaluation), and constraining ACL inheritance (AND).

This section contains:

• Extending ACL Inheritance

Chapter 4
About Configuring Access Control Lists

4-13

• Constraining ACL Inheritance

Extending ACL Inheritance
Extending ACL inheritance (OR with ordered evaluation) dictates that the ACEs are
evaluated from the bottom of the inheritance tree to its top, from child to parent. In
extending ACL inheritance, an application privilege is granted if either child or parent
ACL grants the privilege, and denied if either the child or parent ACL denies the
privilege. In fact, the first ACL that explicitly grants or denies the requested application
privilege determines the final result. After the first grant or deny, further evaluations of
the remaining ACLs are not attempted. Note that this evaluation rule is the same as
the ordered evaluation of ACEs within an ACL.

The following example sets the AllDepACL ACL as the parent ACL for the HRACL ACL.
The inheritance type is set to EXTENDED.

Example 4-27 Extending ACL Inheritance

BEGIN
 SYS.XS_ACL.SET_PARENT_ACL('HRACL','AllDepACL',XS_ACL.EXTENDED);
END;

Constraining ACL Inheritance
Constraining ACL inheritance (AND) requires that both the child and the parent ACL
grant the application privilege so that the ACL check evaluates to true.

Application-wide security policies can be enforced if all the ACLs for an application are
constrained by the same parent ACL. For example, imagine a sample policy where
users who are authenticated as being inside the corporate firewall can have
application privileges in addition to the SELECT privilege. Example 4-28 shows the
constraining ACL for this policy (inheritance type is set to CONSTRAINED), where all
application users with XSPUBLIC application role are granted the SELECT privilege. Note
that only the application users who are inside the corporate firewall have the dynamic
application role FIREWALL enabled. Therefore, application users inside the firewall are
granted all the application privileges in HRPRIVS security class. As this ACL constrains
all the ACLs, such as guestACL, Example 4-29 shows that the application privilege
grants of these ACLs are constrained by FIREWALL_ACL.

Example 4-28 Constraining ACL Inheritance: Firewall-Specific Authentication
Privilege

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'XSPUBLIC'),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('ALL'),
 granted=>true,
 principal_name=>'FIREWALL'));
 sys.xs_acl.create_acl(name=>'FIREWALL_ACL',
 ace_list=>ace_list,
 sec_class=>'HRPRIVS',
 description=>'Only select privilege if not inside firewall');
END;
/

Chapter 4
About Configuring Access Control Lists

4-14

BEGIN
SYS.XS_ACL.SET_PARENT_ACL('GuestACL', 'FIREWALL_ACL',XS_ACL.CONSTRAINED);
END;

Example 4-29 Using a Constraining Application Privilege

SQL> select ACE_ORDER, GRANT_TYPE, PRINCIPAL, PRIVILEGE
 from DBA_XS_ACES
 where ACL='FIREWALL_ACL';

ACE_ORDER GRANT_TYPE PRINCIPAL PRIVILEGE
---------- ---------- --------- ----------
1 GRANT XSPUBLIC SELECT
2 GRANT FIREWALL ALL

About ACL Catalog Views
ACLs have the following catalog views:

• DBA_XS_ACLS catalog view, described in section "DBA_XS_ACLS"

• DBA_XS_ACES catalog view, described in section "DBA_XS_ACES"

About Security Class Catalog Views
Security classes have the following catalog views:

• DBA_XS_SECURITY_CLASSES, described in section
"DBA_XS_SECURITY_CLASSES"

• DBA_XS_SECURITY_CLASS_DEP, described in "DBA_XS_SECURITY_CLASS_DEP"

• DBA_XS_PRIVILEGES, described in "DBA_XS_PRIVILEGES"

Data Security
Data security associates ACLs with a logical group of rows, known as a data realm.

This enables applications to define and enforce application-specific privileges at the
database layer, through policies that define data realms and their access. These data
realms include both a SQL predicate that identifies a set of rows and an ACL that
protects the identified rows. The ACL evaluation is based on the application user, not
the schema owner.

This section includes the following topics:

• Data Realms

• Parameterized ACL

Data Realms
Real Application Security's Data Security policy data realms associate ACLs with
rows in a table. A data realm has two parts:

1. A rule expressed as a SQL predicate, which selects a set of rows.

2. A set of ACLs, which specify access policies on the rows.

Chapter 4
Data Security

4-15

Data Security manages DML Real Application Security application privileges granted
by the associated ACLs. The DataSecurity module does not inherently enforce other
(non-DML) Real Application Security application privileges. Such application privilege
may be enforced programmatically as part of a DML operation, when invoking the
CHECK_PRIVILEGE operator inside either the SQL operator or data realm predicate.

Parameterized ACL
Because each data realm defines a rule that uses a set of parameters, different values
for these parameters select different rows. These sets of rows may require different
ACLs. Therefore, association between an ACL and a set of rows depends on the data
realm rule and its parameter names and values.

ACL Binding
In the database, a privilege may be bound to a resource in the following manner:

• It can be explicitly bound as part of a privilege grant. For example, database object
privileges are bound to a resource as part of a privilege grant, such as GRANT
user_N update ON table_M.

• It may also be globally bound as part of the privilege definition, such as a system
privileges ALTER SYSTEM or CREATE ANY TABLE, which do not require the resource
name as part of their grant statement.

Similarly, a Real Application Security application privilege can be one of these types:

• Explicitly bound through an ACL and data realms as part of Data Security policies;
see Configuring Data Security

• Globally bound to a resource as part of its definition

Chapter 4
ACL Binding

4-16

5
Configuring Data Security

This chapter contains:

• About Data Security

• About Validating the Data Security Policy

• Understanding the Structure of the Data Security Policy

• About Designing Data Realms

• Applying Additional Application Privileges to a Column

• About Enabling Data Security Policy for a Database Table or View

• About Creating Real Application Security Policies on Master-Detail Related Tables

• About Managing Application Privileges for Data Security Policies

• Using BEQUEATH CURRENT_USER Views

• Real Application Security: Putting It All Together

• About Schema Level Real Application Security Policy Administration

About Data Security
Data security refers to the ability to control application user access to data in an Oracle
database throughout all components of an Oracle Enterprise, using a uniform
methodology. In Oracle Database Real Application Security, to secure a database
table or view, you must specify the rows that you want to secure by creating a data
realm (see also, data realm).

To restrict access to the data realm, you associate one or more access control lists
(ACLs) that list the application users or application roles and their application
privileges for each data realm. A data realm together with its associated ACL is known
as a data realm constraint.

You can further restrict access to specific columns by applying one or more application
privileges to each column. This is useful in situations where you want only privileged
application users to see the data in that column.

Data security is an extension of Oracle Virtual Private Database (VPD). VPD adds a
WHERE predicate to restrict data access each time an application user selects or
modifies a database table. For more information about VPD, see Oracle Database
Security Guide. Oracle Database Real Application Security extends VPD concepts
further by implementing an authorization model that can further restrict access at both
the row and column by means of associating ACLs to these objects. In addition, the
application session and session context (through user roles and session namespace)
are made more secure. Furthermore Real Application Security provides its own data
dictionaries.

To configure data security in Oracle Database Real Application Security, you must
follow these steps:

5-1

1. Create a data security policy. The data security policy defines one or more data
realms and associates ACLs for each data realm to create data realm constraints.
The data security policy can also contain column-specific attributes to further
control data access. Multiple tables or views can share the same data security
policy. This lets you create a uniform security strategy that can be used across a
set of tables and views.

Example 5-1Example 5-1 shows the structure a data security policy.

2. Associate the data security policy with the table or view you want to secure.

You can run the XS_DATA_SECURITY.APPLY_OBJECT_POLICY PL/SQL procedure to
enable the data security policy for the table or view that contains the data realms
and columns that you want to secure.

Note that if your application security requires that you update table rows and also
restrict read access to certain columns in the same table, you must use two
APPLY_OBJECT_POLICY procedures to enforce both data security policies. For
example, one APPLY_OBJECT_POLICY procedure would enforce the DML
statement_types required for updating table rows (for example, INSERT, UPDATE,
DELETE), while the other APPLY_OBJECT_POLICY procedure would enforce only the
statement_types of SELECT for the column constraint.

Example 5-5Example 5-5 shows how to use the APPLY_OBJECT_POLICY
procedure. See "APPLY_OBJECT_POLICY Procedure" for more information.

3. Validate the data security policy. See "About Validating the Data Security
Policy" for more information.

About Validating the Data Security Policy
Oracle recommends that you should always validate the Real Application Security
objects after administrative configuration changes. The XS_DIAG package provides a
set of validation APIs to help ensure that the complicated relationships among your
Real Application Security objects are not damaged unintentionally by these changes.

See "VALIDATE_DATA_SECURITY Function" for more information about validating a
data security policy.

Understanding the Structure of the Data Security Policy
You can create a data security policy using the XS_DATA_SECURITY.CREATE_POLICY
PL/SQL procedure.

Figure 5-1 shows the structure of a Real Application Security data security policy
named HR.EMPLOYEES_DS that is created from a data realm constraint and a column
constraint, both of which are to be applied to the EMPLOYEES table. The data realm
constraint defines the rows (DEPARTMENT_ID with a value of 60 or 100) on which the
data security policy applies and the ACL (HRACL) that is associated with these rows.
The column constraint defines a constraint for the sensitive column data in the SALARY
column of the EMPLOYEES table by using the VIEW_SENSITIVE_INFO privilege that is
required to view this sensitive data.

Chapter 5
About Validating the Data Security Policy

5-2

Figure 5-1 Real Application Security Data Security Policy Created on the EMPLOYEES Table

HR.EMPLOYEES_SC

SELECT

VIEW_SENSITIVE_INFO

HR.EMPLOYEES_DS

Data Realm Constraints

Security Classes

Privileges

HR.HRACL

ACLs

Data Security Policies

Realm Constraints

EMPLOYEES

Column Constraints

Grant SELECT to

Employee_Role

Grant SELECT,

VIEW_SENSITIVE_INFO

to Manager_Role

‘DEPARTMENT_ID in (60, 100)’

‘SALARY’

DEPARTMENT_ID

SALARY

Example 5-1 creates the data security policy shown in Figure 5-1.

See Also:

"CREATE_POLICY Procedure"

You should validate the data security policy after you create it. See
"VALIDATE_DATA_SECURITY Function" for more information.

The main parameters of a data security policy are as follows:

• Policy Name: This defines the name of the data security policy.

Example 5-1 uses the name EMPLOYEES_DS for the data security policy that it
creates.

• Data Realm Constraints: The data realm constraints define the data realms, or
the rows, on which the data security policy applies, together with the ACLs to be
associated with these data realms.

Example 5-1 uses the realm_cons list to define the data realm constraint for the
EMPLOYEES_DS policy. realm_cons comprises of rows that have a DEPARTMENT_ID
value of 60 or 100. These rows are associated with the HRACL access control list.

• Column Constraint: Column constraint defines additional constraint for sensitive
column data in the data realm constraint.

Example 5-1 associates the column_cons column constraint with the
EMPLOYEES_DS policy. column_cons protects the SALARY column with the
VIEW_SENSITIVE_INFO privilege.

Chapter 5
Understanding the Structure of the Data Security Policy

5-3

Example 5-1 Structure of a Data Security Policy

-- Create the ACL HRACL.
DECLARE
ace_list XS$ACE_LIST;
BEGIN
ace_list := XS$ACE_LIST(
XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
granted => true,principal_name => 'Employee_Role'),
XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'), granted
=> true, principal_name => 'Manager_Role'));

sys.xs_acl.create_acl(name => 'HRACL',ace_list => ace_list, sec_class =>
'HR.EMPOLYEES_SC');
END;

-- Create variables to store the data realm constraints and the column constraint.
DECLARE
 realm_cons XS$REALM_CONSTRAINT_LIST;
BEGIN

-- Create a data realm constraint comprising of a data realm (rule) and
-- an associated ACL.
 realm_cons :=
 XS$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL')));

-- Create the column constraint.
 column_cons :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('SALARY'),
 privilege=> 'VIEW_SENSITIVE_INFO'));

 -- Create the data security policy.
 SYS.XS_DATA_SECURITY.CREATE_POLICY(
 name=>'HR.EMPLOYEES_DS',
 realm_constraint_list=>realm_cons,
 column_constraint_list=>column_cons);

-- Enforce the data security policy to protect READ access of the EMPLOYEES table
-- and restrict access to the SALARY column using the VIEW_SENSITIVE_INFO
-- privilege.
 sys.xs_data_security.apply_object_policy(
 policy => 'HR.EMPLOYEES_DS',
 schema => 'HR',
 object => 'EMPLOYEES',
 statement_types => 'SELECT',
 owner_bypass => true);

END;

About Designing Data Realms
This section includes the following topics:

• About Understanding the Structure of a Data Realm

• About Using Static Data Realms

• Using Trace Files to Check for Policy Predicate Errors

Chapter 5
About Designing Data Realms

5-4

About Understanding the Structure of a Data Realm
A data realm is a collection of one or more object instances. An object instance is
associated with a single row in a table or view and is identified by the primary key
value of the row in the storage table of the object. A table can have both static and
dynamic data realms defined for it at the same time. As described earlier, an ACL
defines the application privilege grants for the data realm.

A data realm constraint is used to associate a data realm with an ACL. Example 5-2
creates a data realm constraint called realm_cons. The data realm constraint includes
a membership rule to create a data realm. The data realm includes rows where
DEPARTMENT_ID is 60 or 100. realm_cons also declares an ACL, called HRACL, to
associate with the data realm.

The membership of the object instances within a data realm is determined by a rule in
the form of a SQL predicate, which must be applicable to the WHERE clause of a single-
table query against the storage table of the object. The SQL predicate in Example 5-2
is DEPARTMENT_ID in (60, 100).

If the SQL you write causes errors, such as ORA-28113: policy predicate has
error, then you can use trace files to find cause of the error. See "Using Trace Files to
Check for Policy Predicate Errors" for more information.

Example 5-2 uses a single ACL called HRACL. A data realm can be associated with
multiple ACLs, and the same ACL can be used across multiple data realms.

Consider the following columns from the ORDERS purchase order table in the OE sample
schema:

ORDER_ID CUSTOMER_ID ORDER_STATUS SALES_REP_ID ORDER_TOTAL

2354 104 0 155 46257

2355 104 8 NULL 94513.5

2356 105 5 NULL 29473.8

2357 108 5 158 59872.4

2358 105 2 155 7826

Each row in the ORDERS table is an object instance in the purchase order object. The
number listed in the ORDER_ID column is the primary key used to uniquely identify a
particular purchase order object instance. For example:

• A data realm comprised of one object instance, that is, one row. For example, you
could use the WHERE predicate of ORDER_ID=2354.

• A data realm comprised of multiple object instances. For example, you could have
multiple rows using the WHERE predicate of CUSTOMER_ID=104.

• A data realm comprised of the entire contents of the table, defined by the WHERE
predicate of 1=1.

Examples of ways to define data realms are as follows:

• Use valid SQL attributes such as columns in a table.

In this case, you are using WHERE predicates such as the following:

Chapter 5
About Designing Data Realms

5-5

CUSTOMER_ID=104

Changes made to the data in the rows and columns are automatically reflected in
the data collected by the data realm.

• Use parameters in the WHERE predicate.

You can parameterize an data realm, for example:

CUSTOMER_ID=&PARAM

This example assumes that the parameter PARAM has been associated with
different customer IDs. When you grant permissions in this situation, you need to
grant the permission to the specific parameter value. You must specify the values
of the parameters in the ACL associated with the data realm that contains this type
of WHERE predicate. This enables you to create the grant based on customer IDs
without having to create many customer ID-specific data realms.

• Use a membership rule based on runtime application session variables or
subqueries.

An example of this type of membership rule is:

CUSTOMER_ID=XS_SYS_CONTEXT('order', 'cust_id')

However, be careful about creating membership rules that are based on session
variables or subqueries. For example, suppose you wanted to use the session
variable USER, which reflects the current application user, in the membership rule
col=USER. Oracle Database cannot pre-compute the resultant row set because the
result is not deterministic. Application user SCOTT and application user JSMITH may
have a different result for the same row. However, the membership rule
col='SCOTT' works because the rule is always evaluated to the same result for
any given row.

See "About Using Static Data Realms" for more information about creating data
realms. See also "XS_SYS_CONTEXT Function" for more information about
XS_SYS_CONTEXT.

Example 5-2 Components of a Data Realm Constraint

realm_cons := XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL'));

About Using Static Data Realms
In a static data realm, Oracle Database evaluates changes to data affected by a data
realm when the data is updated. You can use static data realms with tables, but not
with views.

To set an data realm to be static, set its is_static attribute to true. The following
example creates a static data realm:

realm_cons := XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL'),
 is_static=> TRUE);

Materialized Views (MVs) will be used to maintain the binding between rows in the
protected table and the ACLs that protect them. They will be generated automatically
whenever static data realms are included in the data security policy. These MVs will

Chapter 5
About Designing Data Realms

5-6

support complete refresh only and will allow up to 125 ACLs to be associated with any
single row.

The MV that is generated will be of the form mv(TABLEROWID, ACLIDLIST) where
TABLEROWID refers to a row in the table being protected and ACLIDLIST is a list of
ACLID values stored in a RAW type column. The individual 16-byte values will be
concatenated to form the list.

Oracle Database evaluates dynamic data realms each time the application user
performs a query on the data realm data. You can use dynamic data realms to protect
rows for both tables and views. A dynamic data realm has the most flexibility, because
it is not bound by the requirements needed for static data realms. Be aware that an
overly complex rule within the dynamic data realm definition may affect performance.

If the base table update is infrequent or the data realm member evaluation rule is
complex, then you should consider using static data realms to protect the base table.
A frequently updated base table may be constantly out of sync with the ACLIDS
storage MV, unless the MV is refreshed accordingly. The administrator should make
the decision based on the base table statistics and performance requirements of the
system.

To set a data realm constraint to be dynamic, set its is_static attribute to FALSE, or
omit the is_static attribute. The following example creates a dynamic data realm:

realm_cons := XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL'),
 is_static=> FALSE);

Using Trace Files to Check for Policy Predicate Errors
If the SQL defined in the realm element causes an ORA-28113: policy predicate
has error or similar message, then you can use trace files to find the cause of the
error. The trace file shows the actual error, along with the VPD view showing the
reason for the problem. Often, the syntax of the view has a trivial error, which you can
solve by analyzing the SQL text of the view.

To enable tracing, log into SQL*Plus as a user who has the ALTER SESSION privilege.

If you want to dump all the data realm constraint rules (with their parameter values
resolved) into the trace file, enter the following statement:

ALTER SESSION SET EVENTS 'TRACE[XSXDS] disk=high';

If you want to dump the VPD views of the XDS-enabled table during the initial (hard)
parse of a query, enter the following statement:

ALTER SESSION SET EVENTS 'TRACE[XSVPD] disk=high';

Alternatively, you can enable tracing by adding the following lines to the initialization
file for the database instance:

event="TRACE[XSXDS] disk=high"
event="TRACE[XSVPD] disk=high"

You can find the location of this trace file by issuing the following SQL command:

SHOW PARAMETER USER_DUMP_DEST;

If you need to disable tracing, issue the following statements:

Chapter 5
About Designing Data Realms

5-7

ALTER SESSION SET EVENTS 'TRACE[XSVPD] off';
ALTER SESSION SET EVENTS 'TRACE[XSXDS] off';

See Also:

• "About Data Security (XSXDS and XSVPD) Event-Based Tracing"

• Oracle Database Administrator’s Guide for more information about using
trace files

Applying Additional Application Privileges to a Column
By default, access to rows is protected by the ACL associated with the data realm. In
addition, you can protect a particular column with custom application privileges.

To protect a column for table T, add a list of column constraints to the data security
policy that will be applied to table T.

Note:

For tables approaching 1000 columns, there is a limitation on the number of
columns that can be protected as Real Application Security uses an internal
virtual column to compute and store the authorization indicator. The sum of
the number of columns and the number of protected columns should not
exceed 1000. (Number of table columns + Number of protected table
columns <=1000). For example, if a table has 998 columns, up to and
including 2 protected columns are allowed; or, if a table has 990 columns, up
to and including 10 protected columns are allowed, and so forth. If the
number of columns to be protected exceeds the number allowed, an
ORA-28113: policy predicate has error is returned.

For example, the PRODUCT_INFORMATION table in the OE schema contains the
LIST_PRICE column. If you want to restrict the display of product prices to specific
categories, you can apply an additional application privilege to the LIST_COLUMN table,
so that only the sales representative who has logged in can see the product list prices
for the categories he or she manages.

Example 5-3 shows a column constraint that protects the LIST_PRICE column with the
ACCESS_PRICE application privilege.

Before you add the column constraint, a SELECT statement on the following columns
from the OE.PRODUCT_INFORMATION table for products in categories 13 and 14 shows
the following output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 123

Chapter 5
Applying Additional Application Privileges to a Column

5-8

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

1755 32MB Cache /NM 14 121

...

After the column constraint is applied, the sales representatives who are responsible
for category 13 products see the following output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 NULL

1755 32MB Cache /NM 14 NULL

...

Conversely, sales representatives responsible for category 14 products see this
output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 NULL

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 123

1755 32MB Cache /NM 14 121

...

In these examples, the list price for product 3355 is NULL. To enable a mid-tier
application to distinguish between the true value of authorized data, which could
include NULL, and an unauthorized value that is always NULL, use the
COLUMN_AUTH_INDICATOR SQL function to check if the column value in a row is
authorized. You can mask the unauthorized data with a value different from NULL by
modifying the SELECT statement to include a DECODE or CASE function that contains the
COLUMN_AUTH_INDICATOR SQL function.

Example 5-4 shows a SELECT statement that uses the COLUMN_AUTH_INDICATOR
function to check authorized data and the DECODE function to replace NULL with the
value restricted.

Afterward, the masked value appears in place of NULL. For example, if our category 13
sales representative logs on and searches for product list prices, he or she sees the
following output:

PRODUCT_ID PRODUCT_NAME CATEGORY_ID LIST_PRICE

3400 HD 8GB /SE 13 389

3355 HD 8GB /SI 13 NULL

2395 32MB Cache /M 14 restricted

1755 32MB Cache /NM 14 restricted

...

Chapter 5
Applying Additional Application Privileges to a Column

5-9

See Also:

• Oracle Database Real Application Security Data Dictionary Views for
information about the column constraints data dictionary views, which list
existing tables that use column level security

• "COLUMN_AUTH_INDICATOR Function"

• Example 5-1 for an example of a column constraint element within a data
security policy.

• Configuring OCI and JDBC Applications for Column Authorization if your
applications use either Oracle Call Interface (OCI) or JDBC

Example 5-3 Column with an Additional Application Privilege That Has Been
Applied

column_cons :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('LIST_PRICE'),
 privilege=> 'ACCESS_PRICE'));

Example 5-4 Checking Authorized Data and Masking NULL Values

SELECT PRODUCT_ID, PRODUCT_NAME, CATEGORY_ID
DECODE(COLUMN_AUTH_INDICATOR(LIST_PRICE), 0, 'restricted', 1, LIST_PRICE) LIST_PRICE
FROM PRODUCT_INFORMATION
WHERE CATEGORY_ID = 13;

About Enabling Data Security Policy for a Database Table or
View

The XS_DATA_SECURITY.APPLY_OBJECT_POLICY procedure applies a data security
policy on a table or view.

This section includes the following topics:

• Enabling Real Application Security Using the APPLY_OBJECT_POLICY
Procedure

• About How the APPLY_OBJECT_POLICY Procedure Alters a Database Table

• About How ACLs on Table Data Are Evaluated

Enabling Real Application Security Using the
APPLY_OBJECT_POLICY Procedure

Use the XS_DATA_SECURITY.APPLY_OBJECT_POLICY procedure to enable Real
Application Security for a database table or view. Example 5-5 enables the ORDERS_DS
data security policy for the OE.ORDERS table. See "APPLY_OBJECT_POLICY
Procedure" for more information.

Chapter 5
About Enabling Data Security Policy for a Database Table or View

5-10

Example 5-5 Using XS_DATA_SECURITY.APPLY_OBJECT_POLICY

BEGIN SYS.XS_DATA_SECURITY.APPLY_OBJECT_POLICY(policy=>'ORDERS_DS',
 schema=>'OE',
 object=>'ORDERS');
END;

This section includes the following topic: About Applying Multiple Policies for a Table
or View.

About Applying Multiple Policies for a Table or View
You can apply multiple data security policies for a table or view. When a table or view
is protected by multiple data security policies, an application user has access to only
those rows that are allowed by all the policies. So, for example, if the data realm for
Policy 1 includes a row, but the data realm for Policy 2 does not include the same row,
the application user would be unable to access the row.

Column security works similarly. Consider the case where column Col1 is protected by
multiple policies: Policy1 protects it with Priv1, Policy2 protects it with Priv2, and so
forth. Then an application user must have been granted all application privileges
(Priv1, Priv2, and so forth) to access Col1.Thus, for columns protected by column
policies, an application user must have been granted access by all policies protecting
the column.

About How the APPLY_OBJECT_POLICY Procedure Alters a
Database Table

The following table, OE.ORDERS, shown earlier under "About Understanding the
Structure of a Data Realm", has been enabled with
XS_DATA_SECURITY.APPLY_OBJECT_POLICY. It shows the addition of the hidden
SYS_ACLOID column. This column, whose data type is NUMBER, lists application user-
managed ACL identifiers. The following table contains the application user-managed
ACL identifier 500, which is a direct grant on the object instance identified by the order
ID 2356.

Note:

The SYS_ACLOID hidden column can be enabled by passing the value
XS_DATA_SECURITY.APPLY_ACLOID_COLUMN for the apply_option parameter
when invoking the XS_DATA_SECURITY procedure. Real Application Security
allows only one ACLID to be added to the SYS_ACLOID column.

ORDER_ID CUSTOMER_ID ORDER_STATUS SALES_REP_ID ORDER_TOTAL SYS_ALCOID

2354 104 0 155 46257

2355 104 8 NULL 94513.5

2356 105 5 NULL 29473.8 500

2357 108 5 158 59872.4

2358 105 2 155 7826

Chapter 5
About Enabling Data Security Policy for a Database Table or View

5-11

The system-managed static ACL identifiers, are stored in a Materialized View (MV).

TABLEROWID ACLIDLIST

AAAO/8AABAAANrCABJ 60FB8AAA40D46C9EE040449864653987

AAAO/8AABAAANrCABL 60FB8AAA40D46C9EE040449864653987

To find detailed information on the data realms or data realm constraints associated
with a table, query the DBA_XS_REALM_CONSTRAINTS data dictionary view. See
"DBA_XS_REALM_CONSTRAINTS" for more information.

About How ACLs on Table Data Are Evaluated
When Oracle Database evaluates a set of ACLs, it stops the evaluation when it finds
the first grant or deny. For this reason, it is important to plan the order of ACLs
carefully. The ACLs associated with each row in a table are evaluated in the following
order:

1. The ACLs from grants directly on object instances (that is, application user-
managed ACL identifiers) are evaluated first. See "About Configuring Access
Control Lists" for more information about creating an ACL and adding it to the
object instance.

2. The ACLs from static data realm constraint grants are evaluated next, after
application user-managed ACLs. If you have multiple static data realms, they
are evaluated in the order of their physical appearance in the data security policy.
See "About Using Static Data Realms" for more information about static data
realms.

3. The ACLs from dynamic data realm constraint grants are evaluated last. If
you have multiple dynamic data realms, they are evaluated in the order of their
physical appearance in the policy. See "About Using Static Data Realms" for more
information about dynamic data realms.

About Creating Real Application Security Policies on
Master-Detail Related Tables

This section includes the following topics:

• About Real Application Security Policies on Master-Detail Related Tables

• About Understanding the Structure of Master Detail Data Realms

• Example of Creating a Real Application Security Policy on Master-Detail Related
Tables

For more information about master-detail tables, see the chapter about creating a
master-detail application using JPA and Oracle ADF in Oracle Database 2 Day + Java
Developer's Guide.

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-12

About Real Application Security Policies on Master-Detail Related
Tables

You can create a data security policy that can be used for master-detail related tables.
Typically, you may want the same policy that protects the master table to protect its
detail tables. Creating a Real Application Security policy for master-detail tables
enables anyone accessing these tables to do so under a uniform policy that can be
inherited from master table to detail table.

The possible inheritance paths for policies and master-detail tables are as follows:

• Multiple detail tables can inherit policies from one master table.

• Detail tables can inherit policies from other detail tables.

• One detail table can inherit policies from multiple master tables.

If any one of the policies in the master table is satisfied, then application users can
access the corresponding rows in the detail table.

About Understanding the Structure of Master Detail Data Realms
To create a Real Application Security policy for master-detail related tables, you must
create a data security policy for each table. In each data security policy for the detail
tables, you indicate the master table from which the detail table inherits by including
master detail data realms. Steps 4, 6 and 7 in the procedure under "Example of
Creating a Real Application Security Policy on Master-Detail Related Tables" shows
examples of creating and using master-detail data realms and creating and applying
master-detail data security policies to master-detail tables.

Example 5-6 shows a sample master detail data realm.

In this specification:

• when_condition specifies a predicate for the detail table, similar to a WHERE clause,
to filter data. If when_condition evaluates to true, then Oracle Database applies
the master policy. This element is optional.

• parent_schema specifies the name of the schema that contains the master table.

• parent_object specifies the name of the master table.

• primary_key specifies the primary key from the master table.

• foreign_key specifies the foreign key of the detail table.

Example 5-6 A Master Detail Data Realm

 realm_cons := XS$REALM_CONSTRAINT_TYPE
 (parent_schema=> 'OE',
 parent_object=> 'CUSTOMERS',
 key_list=> XS$KEY_LIST(XS$KEY_TYPE(primary_key=> 'CUSTOMER_ID',
 foreign_key=> 'CUSTOMER_ID',
 foreign_key_type=> 1)),
 when_condition=> 'ORDER_STATUS IS NOT NULL')

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-13

Example of Creating a Real Application Security Policy on Master-
Detail Related Tables

This example uses the SH sample schema. The SH schema has a table called
CUSTOMERS, which is the master table. The master table CUSTOMERS has a detail table
called SALES, and another detail table called COUNTRIES. The following example
demonstrates how to enforce a Real Application Security policy that virtually partitions
the customer and sales data along their regional boundary defined in the COUNTRIES
table for read access of the CUSTOMERS and SALES tables. In addition, there is a
requirement to mask out data on the columns CUST_INCOME_LEVEL and
CUST_CREDIT_LIMIT to users, except for those users who need full table access for
business analysis, such as the business analyst.

Note:

All administrative commands in this example can be performed by a
database user, such as the SYSTEM account who has the DBA roles in the
database, because the DBA role has been granted appropriate privilege for
Real Application Security administrative tasks. In addition, because security
classes, ACLs, and data security policies are schema qualified objects, you
must explicitly use the intended schema name when these objects are
specified in the APIs, so they will not be resolved to objects under the
database session default schema of SYSTEM.

The descriptions for the three tables, which are all in the same schema (SH), are as
follows:

-- SH.CUSTOMERS in the master table.
 Name Null? Type
 --- -------- ----------------------------
 CUST_ID NOT NULL NUMBER
 CUST_FIRST_NAME NOT NULL VARCHAR2(20)
 CUST_LAST_NAME NOT NULL VARCHAR2(40)
 CUST_GENDER CHAR(1)
 CUST_YEAR_OF_BIRTH NUMBER(4)
 CUST_MARITAL_STATUS VARCHAR2(20)
 CUST_STREET_ADDRESS NOT NULL VARCHAR2(40)
 CUST_POSTAL_CODE NOT NULL VARCHAR2(10)
 CUST_CITY NOT NULL VARCHAR2(30)
 CUST_STATE_PROVINCE VARCHAR2(40)
 COUNTRY_ID NOT NULL CHAR(2)
 CUST_MAIN_PHONE_NUMBER VARCHAR2(25)
 CUST_INCOME_LEVEL VARCHAR2(30)
 CUST_CREDIT_LIMIT NUMBER
 CUST_EMAIL VARCHAR2(30)

-- SH.SALES is a detail table.
 Name Null? Type
 --- -------- ----------------------------
 PROD_ID NOT NULL NUMBER(6)
 CUST_ID NOT NULL NUMBER
 TIME_ID NOT NULL DATE
 CHANNEL_ID NOT NULL CHAR(1)

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-14

 PROMO_ID NOT NULL NUMBER(6)
 QUANTITY_SOLD NOT NULL NUMBER(3)
 AMOUNT_SOLD NOT NULL NUMBER(10,2)

-- SH.COUNTRIES is a detail table.
 Name Null? Type
 --- -------- ----------------------------
 COUNTRY_ID NOT NULL CHAR(2)
 COUNTRY_NAME NOT NULL VARCHAR2(40)
 COUNTRY_SUBREGION VARCHAR2(30)
 COUNTRY_REGION VARCHAR2(20)

Figure 5-2 shows an overview of the completed Real Application Security data security
policies created and applied to the master-detail related tables (CUSTOMERS - SALES -
COUNTRIES) that are described as an overview in the following steps and in more detail
in the steps that follow this figure.

1. Create the principals, an application role and an application user, for each of four
geographic regions: Europe, Americas, Asia, and Africa, in addition to a business
analyst role and an associated application user.

2. Create the VIEW_SENSITIVE_INFO privilege and create the SH.CUST_SEC_CLASS in
which to scope the privilege.

3. Grant the VIEW_SENSITIVE_INFO privilege to the business analyst role.

4. Define a data realm constraint with a rule that parameterizes regions in order for
the system to recognize the string ®ION, which will later be used in a policy.

5. Create a column constraint to secure the two columns, CUST_INCOME_LEVEL and
CUST_CREDIT_LEVEL using the VIEW_SENSITIVE_INFO privilege.

6. Create the data security policy SH.CUSTOMER_DS specifying the data realm
constraint and the column constraint that was previously created.

7. Register the name and data type of the parameter in the rule for the
SH.CUSTOMER_DS data security policy.

8. Create the ACLs for each region to authorize read access to the respective roles
needing read access. For example for the Europe region, you grant SELECT
privilege to the Europe_sales role and grant SELECT and VIEW_SENSITIVE_INFO
privileges to the Business_Analyst role.

9. Associate each ACL in each region with the rows that satisfy the rule where the
value of the parameter REGION is equal to region name, for example, Europe. You
do this for each of the four regions, and then add this ACL to the SH.CUSTOMER_DS
data security policy.

10. Create the data realm constraint for the master-detail tables, so users can access
a record in the SALES detail table only if a user is authorized to access its parent
row in the CUSTOMERS master table.

11. Create the SH.SALES_DS data security policy to enforce this data realm constraint.

In Figure 5-2, the master-detail tables also show the primary key (PK) fields and
foreign key (FK) fields and a number of additional fields that are used in creating the
data realm constraints and column constraints. Using these PK and FK relationships,
the same data security policies that apply to the master table also apply to the detail
tables. In this particular case, for example, all ACLs granting SELECT privilege to the
CUSTOMERS master table and enforced by the SH.CUSTOMER_DS data security policy, also
applies to the SALES detail table.

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-15

Figure 5-2 Real Application Security Data Security Policy Created on Master-Detail Related
Tables

Roles

Principals

Objects (Tables) Master

SH.CUST_SEC_CLASS

SELECT

VIEW_SENSITIVE_INFO

‘View_Europe_sales’

‘REGION’ ‘Europe’

‘View_Americas_sales’

‘REGION’ ‘Americas’

‘View_Asias_sales’

‘REGION’ ‘Asia’

‘View_Africa_sales’

‘REGION’ ‘Africa’

Users
(grantee)

SH.CUSTOMER_DS

SH.SALES_DS

Data Realm Constraints

‘COUNTRY_ID in
(SELECT COUNTRY_ID
from SH.COUNTRIES’ II
‘where
COUNTRY_REGION =
&’ II ‘REGION)’

Column Constraints

‘CUST_INCOME_LEVEL’

‘CUST_CREDIT_LIMIT’

parent object

 primary_key

 foreign_key

‘CUSTOMERS’

‘CUST_ID’

‘CUST_ID’

CUST_INCOME_LEVEL

CUST_ID_PK

CUST_CREDIT_LIMIT

CUST_FIRST_NAME

Detail

PROD_ID

CUST_ID FK

QUANTITY_SOLD

Detail

COUNTRY_REGION

COUNTRY_NAME

COUNTRY_ID PK

Security Classes

ACLs

Privileges

Data Security Policies

Realm Constraints

CUSTOMERS

SALES

COUNTRIES

Europe_sales

Americas_sales

Asia_sales

Africa_sales

Business_Analyst

Smith

James

Miller

Martin

Turner

To create a Real Application Security policy for these master-detail tables, follow these
steps:

1. Create the roles and users needed for each country, (role Europe_sales, user
SMITH), (role Americas_sales, user JAMES), (role Asia_sales, user MILLER), (role
Africa_sales, user MARTIN), and (role Business_Analyst, user TURNER), who is
the only user who will have full table access.

BEGIN
 sys.xs_principal.create_role(name => 'Europe_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Americas_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Asia_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Africa_sales', enabled => TRUE);
 sys.xs_principal.create_role(name => 'Business_Analyst', enabled => TRUE);

 sys.xs_principal.create_user(name => 'SMITH', schema => 'SH');

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-16

 sys.dbms_xs_principals.set_password(username => 'SMITH',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'SMITH', role => 'Europe_sales');

 sys.xs_principal.create_user(name =>' JAMES', schema => 'SH');
 sys.dbms_xs_principals.set_password(username => 'JAMES',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'JAMES', role => 'Americas_sales');

 sys.xs_principal.create_user(name => 'MILLER', schema => 'SH');
 sys.dbms_xs_principals.set_password(username => 'MILLER',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'MILLER', role => 'Asia_sales');

 sys.xs_principal.create_user(name => 'MARTIN', schema => 'SH');
 sys.dbms_xs_principals.set_password(username => 'MARTIN',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'MARTIN', role => 'Africa_sales');

 sys.xs_principal.create_user(name => 'TURNER', schema=> 'SH');
 sys.dbms_xs_principals.set_password(username => 'TURNER',
 password => 'password',
 type => XS_PRINCIPAL.XS_SHA512);
 sys.xs_principal.grant_roles(grantee => 'TURNER', role => 'Business_Analyst');
END;

2. Define the SH.CUST_SEC_CLASS security class for the privilege,
VIEW_SENSITIVE_INFO to protect the sensitive columns.

The row level privileges to access data security protected objects for query and
DML are predefined in the Security Class DML under the SYS schema.

DECLARE
 pr_list XS$PRIVILEGE_LIST;
BEGIN
-- Let's call the new privilege VIEW_SENSIATIVE_INFO
 pr_list := XS$PRIVILEGE_LIST(XS$PRIVILEGE(name => 'VIEW_SENSITIVE_INFO'));

 sys.xs_security_class.create_security_class(
 name => 'SH.CUST_SEC_CLASS',
 description => 'Security Class to protect CUSTOMERS and SALES data',
 parent_list => XS$NAME_LIST('SYS.DML'),
 priv_list => pr_list);
END;

3. Define the data realm constraint with a rule that parameterizes regions, then
define the column constraint and specify the name of the two columns,
CUST_INCOME_LEVEL and CUST_CREDIT_LIMIT, to be secured by the
VIEW_SENSITIVE_INFO privilege. Then, create a SH.CUSTOMER_DS data security
policy and register the name and data type of the parameter in the rule.

The security policy requires that regional customers and sales data be partitioned
with different ACLs. One way to achieve this is to define as many data realms as
regions and do this for both tables. However, in this example, another way is
shown. That is, to parameterize the region in a data realm with a single rule and
use the master-detail relationship to simplify the administrative tasks.

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-17

So, instead of creating many constraints for the policy, it is more efficient to create
only one constraint with the following rule that parameterizes the region:

COUNTRY_ID in
 (select COUNTRY_ID from SH.COUNTRIES where COUNTRY_REGION = ®ION)

In order for the system to recognize that the string ®ION in the rule is indeed a
parameter, you must invoke the xs_data_security.create_acl_parameter
procedure to register the parameter name after the policy is created. In addition,
you must specify the data type of the parameter value. Since regions are stored as
character string data, the XS_ACL.TYPE_VARCHAR macro is used for this example.
Another supported data type is XS_ACL.TYPE_NUMBER for numbers.

DECLARE
 rows_secs XS$REALM_CONSTRAINT_LIST;
 cols_secs XS$COLUMN_CONSTRAINT_LIST;
BEGIN
-- Define the realm constraint with a rule that parameterizes regions.
 rows_secs := xs$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(
 realm => 'COUNTRY_ID in (select COUNTRY_ID from SH.COUNTRIES ' ||
 'where COUNTRY_REGION = &' || 'REGION)'));

-- Define the column constraint to secure CUST_INCOME_LEVEL and
-- CUST_CREDIT_LIMIT columns by using the VIEW_SENSITIVE_INFO privilege.
 cols_secs := XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(
 column_list => XS$LIST('CUST_INCOME_LEVEL', 'CUST_CREDIT_LIMIT'),
 privilege => 'VIEW_SENSITIVE_INFO'));

-- Create the data security policy.
 sys.xs_data_security.create_policy(
 name => 'SH.CUSTOMER_DS',
 realm_constraint_list => rows_secs,
 column_constraint_list => cols_secs,
 description => 'Policy to protect sh.customers table');

-- Register the name and data type of the parameter in the rule.
 sys.xs_data_security.create_acl_parameter(
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 param_type => XS_ACL.TYPE_VARCHAR);
END;

4. Create ACLs to authorize read access for each region. For the Europe region,
grant SELECT to the Europe_sales role. In addition, SELECT and
VIEW_SENSITIVE_INFO privileges are granted to the Business_Analyst role so that
the grantee of the role has full table access and is able to see data in the columns
of CUST_INCOME_LEVEL and CUST_CREDIT_LIMIT as well.

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Europe_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-18

 sys.xs_acl.create_acl(name => 'View_Europe_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Europe region');

-- The ACL must be associated with rows that satisfy the rule where the value
-- of the parameter REGION is equal to Europe. For example the constraint
-- rule becomes the COUNTRY_ID in
-- (select COUNTRY_ID from SH.COUNTRIES where COUNTRY_REGION = 'Europe').

 sys.xs_acl.add_acl_parameter(acl => 'View_Europe_sales',
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 value => 'Europe');
END;

5. Create ACLs to authorize read access for the other three regions, Americas, Asia,
and Africa.

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Americas_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

 sys.xs_acl.create_acl(name => 'View_Americas_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Americas region');

 sys.xs_acl.add_acl_parameter(acl => 'View_Americas_sales',
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 value => 'Americas');
END;

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Asia_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

 sys.xs_acl.create_acl(name => 'View_Asia_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Asia region');

 sys.xs_acl.add_acl_parameter(acl => 'View_Asia_sales',
 policy => 'SH.CUSTOMER_DS',

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-19

 parameter => 'REGION',
 value => 'Asia');
END;

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list => XS$NAME_LIST('SELECT'),
 granted => true,
 principal_name => 'Africa_sales'),
 XS$ACE_TYPE(privilege_list =>
 XS$NAME_LIST('SELECT', 'VIEW_SENSITIVE_INFO'),
 granted => true,
 principal_name => 'Business_Analyst'));

 sys.xs_acl.create_acl(name => 'View_Africa_sales',
 ace_list => ace_list,
 sec_class => 'SH.CUST_SEC_CLASS',
 description => 'Authorize read access for the Africa region');

 sys.xs_acl.add_acl_parameter(acl => 'View_Africa_sales',
 policy => 'SH.CUSTOMER_DS',
 parameter => 'REGION',
 value => 'Africa');
END;

6. Apply the SH.CUSTOMER_DS policy created in Step 3 to protect read access to the
CUSTOMERS table.

BEGIN
 sys.xs_data_security.apply_object_policy(
 policy => 'SH.CUSTOMER_DS',
 schema => 'SH',
 object => 'CUSTOMERS',
 statement_types => 'SELECT',
 owner_bypass => true);
END;

7. Create the data realm master-detail constraint to protect the SALES table. This
master-detail constraint utilizes the same regional partitioning policy as previously
described in Steps 3 through 6. This means that a user can access a record in the
SALES detail table only if that user is authorized to access its parent row in the
CUSTOMERS master table.

DECLARE
 rows_secs XS$REALM_CONSTRAINT_LIST;
BEGIN
-- Define the master-detail constraint.
 rows_secs := xs$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(
 parent_schema => 'SH',
 parent_object => 'CUSTOMERS',
 key_list => xs$key_list(xs$key_type(primary_key => 'CUST_ID',
 foreign_key => 'CUST_ID',
 foreign_key_type => 1))));

-- Create a policy to enforce the constraint.
 sys.xs_data_security.create_policy(
 name => 'SH.SALES_DS',
 realm_constraint_list => rows_secs,
 column_constraint_list => null);

Chapter 5
About Creating Real Application Security Policies on Master-Detail Related Tables

5-20

-- Apply the policy to protect read access of the SALES table.
 sys.xs_data_security.apply_object_policy(
 policy => 'SH.SALES_DS',
 schema => 'SH',
 object => 'SALES',
 statement_types => 'SELECT',
 owner_bypass => true);
END;

8. Grant object level SELECT privilege to PUBLIC for users to perform a query.

GRANT SELECT ON sh.customers TO PUBLIC;
GRANT SELECT ON sh.countries TO PUBLIC;
GRANT SELECT ON sh.sales TO PUBLIC;

9. Connect as user MARTIN and perform a query to display user MARTIN's sales data
for the Africa region and to show the masking of the sensitive sales information for
the CUST_INCOME_LEVEL and CUST_CREDIT_LIMIT columns.

CONNECT MARTIN/welcome

SELECT c.COUNTRY_NAME, c.COUNTRY_ID, ct.CUST_FIRST_NAME, PROD_ID, QUANTITY_SOLD
 FROM sh.customers ct, sh.sales s, sh.countries c
 WHERE ct.CUST_ID = s.CUST_ID AND
 ct.COUNTRY_ID = c.COUNTRY_ID;

COUNTRY_NAME CO CUST_FIRST_NAME PROD_ID QUANTITY_SOLD
-------------------- -- -------------------- ---------- -------------
South Africa ZA Forrest 8050 2
South Africa ZA Mitch 17505 11
South Africa ZA Murry 32785 7
South Africa ZA Heath 3585 12

About Managing Application Privileges for Data Security
Policies

This section includes the following topics:

• About Bypassing the Security Checks of a Real Application Security Policy

• Using the SQL*Plus SET SECUREDCOL Command

About Bypassing the Security Checks of a Real Application Security
Policy

The following database users can bypass the security checks of a Real Application
Security Policy:

• User SYS

• Database users who have the EXEMPT ACCESS POLICY system privilege

• The owner of the object to which the policy is applied.

If the data security policy is applied to an object with the owner bypass
specification, the owner of the object may bypass such policy. By default, owner
bypass is not allowed.

Chapter 5
About Managing Application Privileges for Data Security Policies

5-21

The object owner also can create another view on the same table and assign this
view a different Real Application Security policy.

Using the SQL*Plus SET SECUREDCOL Command
The SQL*Plus SET SECUREDCOL command enables you to customize how secure
column values are displayed in SQL*Plus output for users without permission to view a
column and for columns with unknown security. You can choose either the default text
or specify the text that is displayed. The default is OFF.

When column level security is enabled, and SET SECUREDCOL is set ON, output from
SQL*Plus for secured columns or columns of unknown security level is replaced with
either your customized text or the default indicators. This only applies to scalar data
types. Complex object data output is not affected.

Syntax

SET SECUREDCOL {OFF¦ON} [UNAUTH[ORIZED] text][UNK[NOWN] text]

Parameters

Parameter Description

ON Displays the default indicator asterisks (****) in place of column values for users without
authorization to view the column, and displays question marks (?????) in place of
column values where the security level is unknown for the column (when the specific
privileges applied to the column are not known). The indicators "*" and "?" are filled to
the defined column length or the column length defined by a current COLUMN command.

By default this command will be OFF.

OFF Displays null values in place of column values for application users without authorization
to view the column, and in place of column values where the security level is unknown
for the column.

UNAUTH[ORIZED] Text enables you to specify the text to be displayed in a secured column for application
users without authorization to view the column. This text appears instead of the default
*****.

You can specify any alphanumeric text up to the column length or a maximum of 30
characters. Longer text is truncated. Text containing spaces must be quoted.

UNK[NOWN] Text enables you to specify the text to be displayed in a column of unknown security
level (when the specific privileges applied to the column are not known). This text
appears instead of the default ??????.

You can specify any alphanumeric text up to the column length or a maximum of 30
characters. Longer text is truncated. Text containing spaces must be quoted.

Example 1

SET SECUREDCOL ON
SELECT empno, ename, sal FROM emp ORDER BY deptno;

The output of the example will be as follows:

EMPNO ENAME DEPTNO SAL
----- ------ ------ --------
7539 KING 10 ********
7369 SMITH 20 800
7566 JONES 20 2975
7788 SCOTT 20 3000

Chapter 5
About Managing Application Privileges for Data Security Policies

5-22

7521 WARD 30 ********
7499 ALLEN 30 ********

6 rows selected.

Example 2

SET SECUREDCOL ON UNAUTH notallowed
SELECT empno, ename, sal FROM emp ORDER BY deptno;

The output of the example will be as follows:

EMPNO ENAME DEPTNO SAL
----- ------ ------ -------
7539 KING 10 notallowed
7369 SMITH 20 800
7566 JONES 20 2975
7788 SCOTT 20 3000
7521 WARD 30 notallowed
7499 ALLEN 30 notallowed

6 rows selected.

Using BEQUEATH CURRENT_USER Views
Traditionally, views in Oracle Database use definer's rights. This means that if you
invoke an identity or privilege-sensitive SQL function or an invoker's rights PL/SQL or
Java function, then current schema, and current user, are set to the view owner and
currently enabled roles is set to the view owner plus PUBLIC within the functions's
execution.

If you need background information on invoker's rights and definer's rights, see Oracle
Database PL/SQL Language Reference.

Note:

Certain built-in SQL functions, such as SYS_CONTEXT() and USERENV() are
exceptions to the preceding rule. These functions always use the current
application user's environment, even when called from definer's rights views.

Oracle Database 12c Release 1 (12.1) and later enables you to create views with the
BEQUEATH clause, which lets you configure this behavior. The BEQUEATH clause
determines whether identity or privilege-sensitive SQL functions, invoker's rights
PL/SQL program units, and Java functions referenced in the view inherit the current
schema, current user, and currently enabled roles from the querying user's
environment. This is especially useful for Real Application Security applications, which
often need to run code in the invoking application user's environment.

Using BEQUEATH CURRENT_USER in the view definition creates a view that allows
privilege-sensitive, and invoker's rights functions referenced in the view to inherit
current schema, current user, and currently enabled roles from the querying user's
environment. See Oracle Database SQL Language Reference for the syntax of the
CREATE OR REPLACE VIEW statement.

Chapter 5
Using BEQUEATH CURRENT_USER Views

5-23

Example 5-7 illustrates how a BEQUEATH CURRENT_USER view enables invoker right's
program units to run in the invoking application user's environment. When USER2
selects from USER1's view, the invoker's rights function is invoked in USER2's
environment.

Using BEQUEATH DEFINER in the view definition creates a view that causes privilege-
sensitive, and invoker's rights functions referenced in the view to inherit current
schema, current user, and currently enabled roles from the view definer's environment.
If no BEQUEATH clause is specified, then BEQUEATH DEFINER is assumed.

If a BEQUEATH_DEFINER view contains a reference to a BEQUEATH CURRENT_USER view,
then invoker's rights functions in the referenced view would use the parent view
owner's rights.

Example 5-8 illustrates how a BEQUEATH DEFINER view defines a boundary for nested
invoker right's program units to run in the view owner's environment. When USER2
selects from USER1's view, the view's invoker's rights function is invoked in USER1's
environment.

See Also:

Oracle Database Security Guide for the use of invoker's rights and definer's
rights in VPD and FGA policies

Example 5-7 How a BEQUEATH CURRENT_USER View Works

SQL> CONNECT USER1/USER1
Connected.
SQL>
SQL> -- You first create an invoker's rights function to determine who the current
SQL> -- user really is.
SQL> CREATE OR REPLACE FUNCTION CALLED_AS_USER RETURN VARCHAR2 AUTHID CURRENT_USER IS
2 BEGIN
3 RETURN SYS_CONTEXT('USERENV', 'CURRENT_USER');
4 END;
5 /
Function created.

SQL> -- Note that you do not need to grant EXECUTE to called_as_user, because even
SQL> -- BEQUEATH CURRENT_USER views do name resolution and privilege checking on
SQL> -- the references present in the view body using definer's rights.

SQL> CREATE OR REPLACE VIEW BEQUEATH_INVOKER_VIEW BEQUEATH CURRENT_USER AS
2 SELECT CALLED_AS_USER FROM DUAL;
View created.

SQL> GRANT SELECT ON BEQUEATH_INVOKER_VIEW TO PUBLIC;
Grant succeeded.

SQL> CONNECT USER2/USER2
Connected.

SQL> SELECT * FROM USER1.BEQUEATH_INVOKER_VIEW;
CALLED_AS_USER
--
USER2

Chapter 5
Using BEQUEATH CURRENT_USER Views

5-24

Example 5-8 How a BEQUEATH DEFINER View Works

SQL> CONNECT USER1/USER1
Connected.
SQL>
SQL> -- You first create an invoker's rights function to determine who the current
SQL> -- user really is.
SQL> CREATE OR REPLACE FUNCTION CALLED_AS_USER RETURN VARCHAR2 AUTHID CURRENT_USER IS
2 BEGIN
3 RETURN SYS_CONTEXT('USERENV', 'CURRENT_USER');
4 END;
5 /
Function created.

SQL> -- Note that you do not need to grant EXECUTE to called_as_user, because even
SQL> -- BEQUEATH CURRENT_USER views do name resolution and privilege checking on
SQL> -- the references present in the view body using definer's rights.

SQL> CREATE OR REPLACE VIEW BEQUEATH_DEFINER_VIEW BEQUEATH DEFINER AS
2 SELECT CALLED_AS_USER FROM DUAL;
View created.

SQL> GRANT SELECT ON BEQUEATH_DEFINER_VIEW TO PUBLIC;
Grant succeeded.

SQL> CONNECT USER2/USER2
Connected.

SQL> SELECT * FROM USER1.BEQUEATH_DEFINER_VIEW;
CALLED_AS_USER
--
USER1

This section includes the following topic: Using SQL Functions to Determine the
Invoking Application User.

Using SQL Functions to Determine the Invoking Application User
SQL functions, such as SYS_CONTEXT() and USERENV(), and XS_SYS_CONTEXT(),
always return the current application user's environment, even when called from
definer's rights views. Sometimes, applications need to determine the invoking
application user based on the security context (BEQUEATH property) of views referenced
in the statement.

The following new functions introduced in Oracle Database 12c Release 1 (12.1)
enable you to figure out the invoking application user taking into account the BEQUEATH
property of views referenced in the statement:

• ORA_INVOKING_USER: Use this function to return the name of the database user
whose context is currently used. If the function is invoked from within a definer's
rights boundary, then the name of the database object owner is returned. If the
invoking user is a Real Application Security application user, then the constant
XS$USER is returned.

• ORA_INVOKING_USERID: Use this function to return the identifier (ID) of the
database user whose context is currently used. If the function is invoked from
within a definer's rights boundary, then the ID of the database object owner is
returned.

Chapter 5
Using BEQUEATH CURRENT_USER Views

5-25

If the invoking user is a Real Application Security application user, then the
function returns an identifier common to all Real Application Security application
users, but distinct from the identifier for any database user.

• ORA_INVOKING_XS_USER: Use this function to return the name of the Real
Application Security application user whose context is currently used.

If the invoking user is a database user, then the value NULL is returned.

• ORA_INVOKING_XS_USER_GUID: Use this function to return the identifier (ID) of the
Real Application Security application user whose context is currently used.

If the invoking user is a database user, then the value NULL is returned.

The following example shows a database user USER1 querying ORA_INVOKING_USER
and ORA_INVOKING_XS_USER. ORA_INVOKING_XS_USER returns NULL, as the user is not a
Real Application security application user.

SQL> CONNECT USER1
Enter password:
Connected.
SQL> SELECT ORA_INVOKING_USER FROM DUAL;

ORA_INVOKING_USER
--
USER1

SQL> SELECT ORA_INVOKING_XS_USER FROM DUAL;

ORA_INVOKING_XS_USER
--

See Also:

• Oracle Database SQL Language Reference for detailed information on
the preceding SQL functions and other functions like SYS_CONTEXT

• "XS_SYS_CONTEXT Function"

Real Application Security: Putting It All Together
This section puts all the Real Application Security concepts together in order to define
a basic data security policy. It builds upon the HR scenario example introduced in
"Scenario: Security Human Resources (HR) Demonstration of Employee Information".

The section includes the following topic that discusses each implementation task
described in the scenario with the help of an example.

This section includes the following topics:

• Basic HR Scenario: Implementation Tasks

• Running the Security HR Demo

Basic HR Scenario: Implementation Tasks
The following implementation tasks are discussed:

Chapter 5
Real Application Security: Putting It All Together

5-26

• Connecting as User SYS to Create Real Application Security Users and Roles

• Creating Roles and Application Users

• Creating the Security Class and ACLS

• Creating the Data Security Policy

• Validating the Real Application Security Objects

• Disabling a Data Security Policy for a Table

Connecting as User SYS to Create Real Application Security Users and Roles
To create Real Application Security users and roles, you need only to connect as user
SYS.

Example 5-9 Connecting as User SYS

SQL> connect sys/&passwd as sysdba
Connected.

Creating Roles and Application Users

Creating the Database Role

Create the database role DB_EMP and grant this role the necessary table privileges.
This role is used to grant the required object privileges to application users.

Creating the Application Roles

Grant the DB_EMP Database Role to the Application Roles

Grant the DB_EMP database role to the three application roles, so they each have the
required object privilege to access the table.

Create the Application Users

Create application user DAUSTIN (in the IT department) and grant this user application
roles EMPPLOYEE and IT_ENGINEER.

In this example:

Note:

To make logins easier, you can create the name in upper case. That way,
the user can omit the quotation marks when logging in or connecting to
SQL*Plus. For example:

sqlplus DAUSTIN

Chapter 5
Real Application Security: Putting It All Together

5-27

See Also:

"Creating a Simple Application User Account" for information about how case
sensitivity affects database logins for application users

Create application user SMAVRIS (in the HR department) and grant this user application
roles EMPLOYEE and HR_REPRESENTATIVE.

Grant the HR User the Policy Administration Privilege
ADMIN_ANY_SEC_POLICY

Grant the HR user the ADMIN_ANY_SEC_POLICY privilege.

Example 5-10 Creating the DB_EMP Role

SQL> create role db_emp;

Role created.

SQL> grant select, insert, update, delete on hr.employees to db_emp;

Grant succeeded.

Example 5-11 Creating the Application Role EMPLOYEE for Common
Employees

SQL> exec sys.xs_principal.create_role(name => 'employee', enabled => true);

PL/SQL procedure successfully completed.

Example 5-12 Creating the Application Role IT_ENGINEER for the IT
Department

SQL> exec sys.xs_principal.create_role(name => 'it_engineer', enabled => true);

PL/SQL procedure successfully completed.

Example 5-13 Creating the Application Role HR_REPRESENTATIVE for the HR
Department

SQL> exec sys.xs_principal.create_role(name => 'hr_representative', enabled => true);

PL/SQL procedure successfully completed.

Example 5-14 Granting DB_EMP Database Role to Each Application Role

SQL> grant db_emp to employee;

Grant succeeded.

SQL> grant db_emp to it_engineer;

Grant succeeded.

SQL> grant db_emp to hr_representative;

Grant succeeded.

Chapter 5
Real Application Security: Putting It All Together

5-28

Example 5-15 Creating Application User DAUSTIN

SQL> exec sys.xs_principal.create_user(name => 'daustin', schema => 'hr');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.set_password('daustin', 'password');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'employee');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'it_engineer');

PL/SQL procedure successfully completed.

Example 5-16 Creating Application User SMAVRIS

SQL> exec sys.xs_principal.create_user(name => 'smavris', schema => 'hr');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.set_password('smavris', 'password');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('smavris', 'employee');

PL/SQL procedure successfully completed.

SQL> exec sys.xs_principal.grant_roles('smavris', 'hr_representative');

PL/SQL procedure successfully completed.

Example 5-17 Granting the HR User the Policy Administration Privilege
ADMIN_ANY_SEC_POLICY

SQL> exec sys.xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

PL/SQL procedure successfully completed.

Creating the Security Class and ACLS

Creating the Security Class

Create a security class HR_PRIVILEGES based on the predefined DML security class.
HR_PRIVILEGES has a new privilege VIEW_SALARY, which controls access to the SALARY
column.

Chapter 5
Real Application Security: Putting It All Together

5-29

Creating the ACls

Create three ACLs, EMP_ACL, IT_ACL, and HR_ACL to grant privileges for the data
security policy to be defined later.

In this example:

• Lines 11 through 13: Creates the EMP_ACL and grants EMPLOYEE the SELECT and
VIEW_SALARY privileges.

• Lines 21 through 23: Creates the IT_ACL and grants IT_ENGINEER the SELECT
privileges.

• Lines 30 through 33: Creates the HR_ACL and grants HR_REPRESENTATIVE the
SELECT, INSERT, UPDATE, and DELETE database privileges to view and update all
employee's records, and granting the VIEW_SALARY application privilege to view the
SALARY column.

Example 5-18 Creating the HRPRIVS Security Class

SQL> declare
 2 begin
 3 xs_security_class.create_security_class(
 4 name => 'hr_privileges',
 5 parent_list => xs$name_list('sys.dml'),
 6 priv_list => xs$privilege_list(xs$privilege('view_salary')));
 7 end;
 8 /

PL/SQL procedure successfully completed.

Example 5-19 Creating ACLs: EMP_ACL, IT_ACL, and HR_ACL

SQL> declare
 2 aces xs$ace_list := xs$ace_list();
 3 begin
 4 aces.extend(1);
 5
 6 -- EMP_ACL: This ACL grants EMPLOYEE role the privileges to view an employee's
 7 -- own record including SALARY column.
 8 aces(1) := xs$ace_type(privilege_list => xs$name_list('select','view_salary'),
 9 principal_name => 'employee');
 10
 11 sys.xs_acl.create_acl(name => 'emp_acl',
 12 ace_list => aces,
 13 sec_class => 'hr_privileges');
 14
 15 -- IT_ACL: This ACL grants IT_ENGINEER the privilege to view the employee
 16 -- records in IT department, but it does not grant the VIEW_SALARY
 17 -- privilege that is required for access to SALARY column.
 18 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 19 principal_name => 'it_engineer');
 20
 21 sys.xs_acl.create_acl(name => 'it_acl',
 22 ace_list => aces,
 23 sec_class => 'hr_privileges');
 24
 25 -- HR_ACL: This ACL grants HR_REPRESENTATIVE the privileges to view and
update all
 26 -- employees' records including SALARY column.
 27 aces(1):= xs$ace_type(privilege_list => xs$name_list('select', 'insert',

Chapter 5
Real Application Security: Putting It All Together

5-30

 28 'update', 'delete', 'view_salary'),
 29 principal_name => 'hr_representative');
 30
 31 sys.xs_acl.create_acl(name => 'hr_acl',
 32 ace_list => aces,
 33 sec_class => 'hr_privileges');
 34 end;
 35 /

PL/SQL procedure successfully completed.

Creating the Data Security Policy
Create the data security policy for the EMPLOYEES table. The policy defines three data
realm constraints and a column constraint that protects the SALARY column.

In this example:

• Lines 7 through 23: Defines the three data realm constraints.

• Lines 27 through 30: Defines the column constraint requiring the VIEW_SALARY
application privilege to view the SALARY column.

• Lines 32 through 35: Creates the EMPLOYEES_DS data security policy
encompassing the three data realm constraints and the column constraint.

Applying the Data Security Policy to the Table

Apply the data security policy to the EMPLOYEES table.

Example 5-20 Creating the EMPLOYEES_DS Data Security Policy

SQL> declare
 2 realms xs$realm_constraint_list := xs$realm_constraint_list();
 3 cols xs$column_constraint_list := xs$column_constraint_list();
 4 begin
 5 realms.extend(3);
 6
 7 -- Realm #1: Only the employee's own record.
 8 -- EMPLOYEE role can view the realm including SALARY column.
 9 realms(1) := xs$realm_constraint_type(
 10 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 11 acl_list => xs$name_list('emp_acl'));
 12
 13 -- Realm #2: The records in the IT department.
 14 -- IT_ENGINEER role can view the realm excluding SALARY column.
 15 realms(2) := xs$realm_constraint_type(
 16 realm => 'department_id = 60',
 17 acl_list => xs$name_list('it_acl'));
 18
 19 -- Realm #3: All the records.
 20 -- HR_REPRESENTATIVE role can view and update the realm including
SALARY column.
 21 realms(3) := xs$realm_constraint_type(
 22 realm => '1 = 1',
 23 acl_list => xs$name_list('hr_acl'));
 24
 25 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 26 -- privilege.
 27 cols.extend(1);
 28 cols(1) := xs$column_constraint_type(

Chapter 5
Real Application Security: Putting It All Together

5-31

 29 column_list => xs$list('salary'),
 30 privilege => 'view_salary');
 31
 32 sys.xs_data_security.create_policy(
 33 name => 'employees_ds',
 34 realm_constraint_list => realms,
 35 column_constraint_list => cols);
 36 end;
 37 /

PL/SQL procedure successfully completed.

Example 5-21 Applying the EMPLOYEES_DS Security Policy to the
EMPLOYEES Table

SQL> begin
 2 sys.xs_data_security.apply_object_policy(
 3 policy => 'employees_ds',
 4 schema => 'hr',
 5 object =>'employees');
 6 end;
 7 /

PL/SQL procedure successfully completed.

Validating the Real Application Security Objects
After you create these Real Application Security objects, validate them to ensure they
are all properly configured.

Example 5-22 Validating the Real Application Security Objects

SQL> set serveroutput on;
SQL> begin
 2 if (xs_diag.validate_workspace()) then
 3 dbms_output.put_line('All configurations are correct.');
 4 else
 5 dbms_output.put_line('Some configurations are incorrect.');
 6 end if;
 7 end;
 8 /
All configurations are correct.

PL/SQL procedure successfully completed.

SQL> -- XS$VALIDATION_TABLE contains validation errors if any.
SQL> -- Expect no rows selected.
SQL> select * from xs$validation_table order by 1, 2, 3, 4;

no rows selected

Disabling a Data Security Policy for a Table
Example 5-23 shows the complementary operation of disabling data security for table
HR.EMPLOYEES.

Example 5-23 Disabling a Data Security Policy for a Table

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy => 'EMPLOYEES_DS', schema =>

Chapter 5
Real Application Security: Putting It All Together

5-32

'HR', object => 'EMPLOYEES');
END;
/

Running the Security HR Demo
The Security HR Demo is run in two ways:

• Using direct logon first as application user DAUSTIN and later as application user
SMAVRIS.

In each case, each user performs queries on the HR.EMPLOYEES table to
demonstrate what each can access or cannot access to view employee records
and the SALARY column. See "Running the Security HR Demo Using Direct Logon"
for a description of this demonstration.

• Attached to a Real Application Security session

In this demonstration, the Real Application Security Administrator creates a Real
Application Security session for an application user to attach to. See "Running the
Security HR Demo Attached to a Real Application Security Session" for a
description of this demonstration.

About Schema Level Real Application Security Policy
Administration

Describes introduction of schema level privileges for Real Application Security policy
administration across different applications within the same schema.

Beginning with Oracle Database 12c Release 2 (12.2), Real Application Security
introduces schema level privileges, which allows a policy administrator to create,
update, and apply a policy in only the granted schema and administer policy
enforcement within one application, thereby achieving separate management and
enforcement of a policy across different applications within the same schema. This
level of policy administration is essential in a Cloud computing scenario where each
application may be running under one or more schemas. It then becomes highly
desirable for a policy administrator to have the ability to manage and apply data
security policies for each individual application in that environment.

Achieving Schema Level Data Security Policy Administration

To achieve schema level data security policy administration, the following new and
changed features were introduced:

• The GRANT_SYSTEM_PRIVILEGE and REVOKE_SYSTEM_PRIVILEGE procedures were
extended with the addition of the schema parameter to allow granting and revoking
Real Application Security privileges on a particular schema to a database or
application user as shown in the following syntax descriptions:

XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,

Chapter 5
About Schema Level Real Application Security Policy Administration

5-33

 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,
 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

Where the schema parameter is the schema on which the privilege is granted. The
value is NULL if the privilege is a system privilege.

• The system security class ADMIN_SEC_POLICY privilege is extended to schemas for
policy management (Create, Read, Update, and Delete) operations. So a policy
administrator can grant ADMIN_SEC_POLICY privilege on a particular schema to a
user to manage policy artifacts within granted schemas and apply policy
management for individual applications. The APIs that are affected by this
enhancement include the Real Application Security administrator packages:
XS_ACL, XS_DATA_SECURITY, and XS_SECURITY_CLASS

• A new system security class APPLY_SEC_POLICY privilege is added for policy
enforcement to allow a policy administrator to enforce a policy within granted
schemas within one application. The following data security APIs are checked
before enforcing data security policies:

– XS_DATA_SECURITY.APPLY_OBJECT_POLICY

– XS_DATA_SECURITY.REMOVE_OBJECT_POLICY

– XS_DATA_SECURITY.ENABLE_OBJECT_POLICY

– XS_DATA_SECURITY.DISABLE_OBJECT_POLICY

• Auditing of GRANT_SYSTEM_PRIVILEGE procedure is provided with the audit action
AUDIT_GRANT_PRIVILEGE.

• Auditing of REVOKE_SYSTEM_PRIVILEGE procedure is provided with the audit action
AUDIT_REVOKE_PRIVILEGE.

• A new data dictionary view DBA_XS_PRIVILEGE_GRANTS is added to show all the
Real Applicaton Security system or schema level privilege grants in the database.

• In addition, the following views are added: ALL_XS_SECURITY_CLASSES,
ALL_XS_SECURITY_CLASS_DEP, ALL_XS_PRIVILEGES,
ALL_XS_IMPLIED_PRIVILEGES, ALL_XS_ACLS, ALL_XS_ACES,
ALL_XS_POLICIES, ALL_XS_REALM_CONSTRAINTS,
ALL_XS_INHERITED_REALMS, ALL_XS_ACL_PARAMETERS,
ALL_XS_COLUMN_CONSTRAINTS, ALL_XS_APPLIED_POLICIES, and
DBA_XS_PRIVILEGE_GRANTS

This section includes the following topic: Setting Up and Enabling a Schema Level
Data Security Policy.

Chapter 5
About Schema Level Real Application Security Policy Administration

5-34

Setting Up and Enabling a Schema Level Data Security Policy
Describes how to set up and enable a schema level data security policy for two
application administrators.

The following set of examples describe how to set up and enable a schema level data
security policy for two application administrators to administer two different schemas.
Later, it will show how to disable the data security policy and revoke system privileges
from these two application administrator users.

Create the application administrator users, then grant them the roles they need.

EXEC SYS.XS_PRINCIPAL.CREATE_USER(NAME => 'app_admin_user1', SCHEMA =>
'HR');
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_admin_user1', 'PASSWORD');
EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_admin_user1', 'XSCONNECT');

EXEC SYS.XS_PRINCIPAL.CREATE_USER(NAME => 'app_admin_user2', SCHEMA =>
'SH');
EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('app_admin_user2', 'PASSWORD');
EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('app_admin_user2', 'XSCONNECT');

The Real Application Security Administrator with either SYS or a user granted GRANT
ANY PRIVILEGE grants the system privileges ADMIN_SEC_POLICY and APPLY_SEC_POLICY
to each application administrator user on the respective HR and SH schemas to the
Real Application Security user, PTYPE_XS.

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');

EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');

Next, the policy administrator applies the desired object policy to a particular table in
an application and enables it. For example, see the HR demo script About Creating
the Data Security Policy for an example of creating a data security policy
EMPLOYEES_DS for the EMPLOYEE table. Once created, then the policy administrator
applies the data security policy EMPLOYEES_DS to the EMPLOYEES table in the HR schema.

BEGIN
 SYS.XS_DATA_SECURITY.ENABLE_OBJECT_POLICY(policy =>'EMPLOYEES_DS',
 schema=>'hr',
 object=>'employees');

Chapter 5
About Schema Level Real Application Security Policy Administration

5-35

END;
/

BEGIN
 SYS.XS_DATA_SECURITY.ENABLE_OBJECT_POLICY(policy =>'CUSTOMERS_DS',
 schema=>'sh',
 object=>'customers');
END;
/

Disabling the Data Security Policy and Revoking the System Privileges from
the User

Describes how to disable data security policy and revoke the system privileges from
the user.

How to Disable the Data Security Policy and Revoke the System Privileges from
the User

To disable the EMPLOYEES_DS data security policy for the EMPLOYEES table in the HR
schema, the policy administrator does the following:

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy =>'EMPLOYEES_DS',
 schema=>'hr',
 object=>'employees');
END;
/

To disable the CUSTOMERS_DS data security policy for the CUSTOMERS table in the SH
schema, the policy administrator does the following:

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy =>'CUSTOMERS_DS',
 schema=>'sh',
 object=>'customers');
END;
/

To revoke the system privileges from application administrator users app_admin_user1
and app_admin_user2 not from the role policy_admin_role because there may be
other policy administrators with this same role enabled, the Real Application Security
Administrator with either SYS privilege or a user granted GRANT ANY PRIVILEGE
privilege revokes the system privileges ADMIN_SEC_POLICY and APPLY_SEC_POLICY
from application users app_admin_user1and app_admin_user2 as follows:

EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');

Chapter 5
About Schema Level Real Application Security Policy Administration

5-36

EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user1', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'HR');

EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('APPLY_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');
EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMIN_SEC_POLICY',
'app_admin_user2', SYS.XS_ADMIN_UTIL.PTYPE_XS, 'SH');

Chapter 5
About Schema Level Real Application Security Policy Administration

5-37

6
Using Real Application Security in Java
Applications

This chapter describes how to use Real Application Security in Java applications. This
chapter contains the following sections:

• About Initializing the Middle Tier

• About Managing Real Application Security Sessions

• Authenticating Application Users Using Java APIs

• About Authorizing Application Users Using ACLs

• Human Resources Administration Use Case: Implementation in Java

About Initializing the Middle Tier
The XSSessionManager class manages the life cycle of the session. It provides
methods to create, attach, assign, detach, and destroy sessions. It also provides
methods to perform cache activities.

This section describes the following topics:

• About Mid-Tier Configuration Mode

• Using the getSessionManager Method

• About Changing the Middle-Tier Cache Setting

About Mid-Tier Configuration Mode
You can use one mid-tier configuration mode:

• Dispatcher mode - get a session manager with dispatcher connections

In dispatcher mode, the dispatcher user must have session administration and cache
access privileges. The application user does not need any session or cache privilege.
The two predefined database roles, xs_session_admin and xs_cache_admin, can be
granted to the dispatcher.

For best security practices, the application user should be given the least amount of
privilege, therefore dispatcher mode is the recommended mid-tier configuration.

Using the getSessionManager Method
There is one way to get a session manager following the mid-tier configuration mode
described in "About Mid-Tier Configuration Mode":

• Pass a connection or a pool of connections of the dispatcher user. In this way, the
needed privileges are granted to the dispatcher. The two predefined roles,
xs_session_admin and xs_cache_admin, should be granted to the dispatcher user.
The dispatcher user is a direct logon Real Application Security user.

6-1

Using the dispatcher mode, you can initiate the Real Application Security middle tier
by getting an instance of the session manager (see Example 6-1). Use the
getSessionManager method (in bold typeface) of the XSSessionManager class to get an
instance of the session manager. This method initializes a Real Application Security
session manager by using either a single connection or a pool of connections. The
caller of the getSessionManager method should have the Java Authentication and
Authorization Service (JAAS) permission
XSSecurityPermission("initSecurityManager").

Privileges for the Session Manager

Real Application Security session manager is initialized with a connection of a
privileged user, who authorizes the session operations on behalf of the regular Real
Application Security application users. If the session manager has the session
operation privileges, then, each application user under the session manager does not
need to have session operation privileges, and the application user's session
operations can be performed as a trusted party. The session manager authorizes
session operations for a connection, so you do not need to grant the createSession
and attachToSession privileges directly to the regular Real Application Security
application user. This session manager must have the following privileges:

• Real Application Security database object privileges to manage cached data in the
middle tier.

• Session life cycle management privileges for the session manager to create or
attach sessions on behalf of Real Application Security application user and
external users.

Roles for the Session Manager

The session manager needs the following two roles to have the privileges mentioned
in "Privileges for the Session Manager":

• A database role xs_cache_admin with the following privileges:

– Privilege to query Real Application Security entities and to synchronize
metadata

– Privilege to execute code for the key exchange

• A Real Application Security role, xs_session_admin, with ADMIN_SESSION privilege

These roles are predefined in the system.

Example 6-1 How to Get an Instance of the Session Manager in Java Using a
Single Connection

static XSSessionManager manager;
static Connection dispatcherConn = null;
int cacheMaxIdleTime=30;
int cacheMaxsize=2048000;
String host;
String port;
String sid;
...
dispatcherConn = DriverManager.getConnection("jdbc:oracle:thin:@" + host + ":" +
port + ":" + sid, dispatcherUser, dispatcherPassword);
...
manager = XSSessionManager.getSessionManager(dispatcherConn, cacheMaxIdleTime,
cacheMaxsize);

Chapter 6
About Initializing the Middle Tier

6-2

About Changing the Middle-Tier Cache Setting
Once the session manager is initialized, it starts to add some data like the ACL and
Security class information to the cache. This cache data can be reused. The cache is
initialized with its default settings that can be changed later.

This section describes the following topics:

• About Setting the Maximum Cache Idle Time

• About Setting the Maximum Cache Size

• About Getting the Maximum Cache Idle Time

• About Getting the Maximum Cache Size

• About Removing Entries from the Cache

• About Clearing the Cache

About Setting the Maximum Cache Idle Time
To set the maximum cache idle time, use the setCacheMaxIdleTime method of the
XSSessionManager class. The setCacheMaxIdleTime method sets the maximum
number of minutes that the cache can go without updating.

If an attempt is made to fetch objects from the cache and the XSSessionManager has
not called the updateCache method for a period of time equal to the value set by the
setCacheMaxIdleTime method, then, before returning any objects, the updateCache
method is invoked forcefully to check that all the cached objects are still valid. The
caller of the setCacheMaxIdleTime method must have the JAAS permission
XSSecurityPermission("setCacheMaxIdleTime").

About Setting the Maximum Cache Size
To set the maximum cache size, use the setCacheMaxSize method of the
XSSessionManager class. This method sets the size of the cache on the middle tier.

The default size of the cache is 10MB. The minimum cache size is 1MB. The caller of
the setCacheMaxSize method must have the JAAS permission
XSSecurityPermission("setCacheMaxSize").

About Getting the Maximum Cache Idle Time
To get the maximum cache idle time, use the getCacheMaxIdleTime method of the
XSSessionManager class. This method returns the maximum number of minutes for
which the cache does not have an updateCache call to update the cache. The caller of
the getCachemaxIdleTime method must have the JAAS permission
XSSecurityPermission("getCacheMaxIdleTime").

About Getting the Maximum Cache Size
To get the maximum cache size, use the getCacheMaxSize method of the
XSSessionManager class. This method returns the maximum size of the cache in bytes.
The caller of the getCacheMaxSize method must have the JAAS permission
XSSecurityPermission("getCacheMaxSize").

Chapter 6
About Initializing the Middle Tier

6-3

About Removing Entries from the Cache
To remove entries from the cache, a cache eviction algorithm is used, along with
watermark levels. A watermark level determines how long data should stay in memory
cache before being removed. When the cache size reaches the high watermark, then
the cache eviction algorithm removes entries until the cache size reaches the low
watermark.

This section describes the following activities for removing entries from the cache:

• About Setting the WaterMark

• About Getting the High WaterMark

• About Getting the Low WaterMark

About Setting the WaterMark
To set the watermark, use the setWaterMark method from the XSSessionManager
class. The caller of the setWaterMark method must have the JAAS permission
XSSecurityPermission("setWaterMark").

About Getting the High WaterMark
To get the high watermark for cache, use the getHighWaterMark method from the
XSSessionManager class.

About Getting the Low WaterMark
To get the low watermark for cache, use the getLowWaterMark method from the
XSSessionManager class.

About Clearing the Cache
To clear the cache explicitly from the middle tier, use the clearCache method of the
XSSessionManager class. This method explicitly clears the shared cache from the
middle tier. The caller of the clearCache method must have the JAAS permission
XSSecurityPermission("clearCache").

About Managing Real Application Security Sessions
This section describes the following topics:

• Creating a Real Application Security User Session

• Attaching an Application Session

• Assigning or Switching an Application User

• Enabling Real Application Security Application Roles

• About Performing Namespace Operations as Session User

• About Performing Miscellaneous Session-Related Activities

• Detaching an Application Session

• Destroying A Real Application Security Application Session

Chapter 6
About Managing Real Application Security Sessions

6-4

Creating a Real Application Security User Session
To create a Real Application Security user session, for example, lws, for the
application user lwuser, use the createSession method of the XSSessionManager
class (see Example 6-2). The createSession method (in bold typeface). creates a
session on the server with the specified parameters passed. A database round-trip is
required to perform this operation.

To create an anonymous Real Application Security application session, use the
createAnonymousSession method of the XSSessionManager class. The application user
for this session is a predefined anonymous user, so no user parameter is passed in
this method.

Both methods support using a cookie and a namespace.

The cookie, passed as the parameter, can be used to identify the newly created Real
Application Security application session in future calls, until the cookie value is
changed or the session is destroyed.

The namespace, passed as the parameter, can be used to create a namespace in the
session. For details, see "About Performing Namespace Operations as Session User".

It is possible to reassign a specific application user to take over this session. In this
case, some of the state of the session for the anonymous user is still preserved. For
details, see "Assigning or Switching an Application User".

Example 6-2 How to Create a Real Application Security Session in Java

Session lws = null;
static XSSessionManager manager;
static Connection lwsConn = null;
static String user = "lwuser";
String cookie="nst";
...
lws = manager.createSession(lwsConn, user, cookie, null);
...

Attaching an Application Session
To attach an application session, use the attachSession method of the
XSSessionManager class (see Example 6-3). The attachSession method (in bold
typeface) attaches the JDBC connection to the specified Real Application Security
application session object. It also enables or disables the dynamic application roles,
creates namespaces of the session, and sets the authentication time.

You can also attach to a session by using either ID or cookie as shown in
Example 6-4. See Example 7-2 for another example of attaching to a session by using
a cookie.

Example 6-3 How to Attach a Real Application Security Session in Java

Session lws = null;
static Connection lwsConn = null;
static XSSessionManager manager;
static String user = "lwuser";
String cookie = "lwscookie";
List <String> edynamicRoles = new ArrayList <String>();
edynamicRoles.add("EDYNROLE001");

Chapter 6
About Managing Real Application Security Sessions

6-5

edynamicRoles.add("EDYNROLE002");
List <String> ddynamicRoles = new ArrayList <String>();
ddynamicRoles.add("DDYNROLE001");
ddynamicRoles.add("DDYNROLE002");
...
lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, edynamicRoles, ddynamicRoles, null, new
Timestamp(System.currentTimeMillis()));

Example 6-4 How to Attach Using a Cookie

Session lws = null;
static Connection lwsConn = null;
static XSSessionManager manager;
...
lws = manager.attachSessionByCookie(lwsConn, "myCookie", null, null, null, null,
null);

Assigning or Switching an Application User
If you have an anonymous session, you can reassign it to another application user
later. Otherwise, if your session is assigned to an application user already, you can
switch the session to another application user. In either case, the session must be
attached first, before assigning or switching an application user.

To assign a name to a previously anonymous application user, use the assignUser
method of the XSSessionManager class (see Example 6-5). The assignUser method (in
bold typeface) changes the session context (user and roles) to the given user, for
example, lwuser, but keeps the existing namespace. It can also change the session at
the same time, by any given dynamic roles and namespace parameters, in the same
way as the attachSession method. The associated session attributes remain in effect
unless they are removed through another call.

To change a session user from a named user (non-anonymous) to another named
user, use the switchUser method of the Session object.

Any request for retaining the dynamic application roles, which were assigned while
attaching the session, is disabled. The dynamic application roles are retained for the
new application user only when they are also included in the dynamic application roles
list for the new application user. The associated session attributes remain in effect
unless the session attributes list is reset.

This method changes the session context (user and roles) to the target user (see
"Switching a Current Application User to Another Application User in the Current
Application Session" for details about roles change), but not keeping the existing
namespace by default. If you want to retain the existing namespace, you can use the
switchUserKeepState method of the Session object. It can also change the session at
the same time, by any given dynamic roles and namespace parameters, in the same
way as the attachSession method.

Example 6-6 demonstrates how to switch the application user from lwuser to lwuser1.
The switchUser method is in bold typeface.

Example 6-5 How to Assign an Application User to a Session in Java

Session lws = null;
static XSSessionManager manager;
static String user = "lwuser";
...

Chapter 6
About Managing Real Application Security Sessions

6-6

manager.assignUser(lws, user, null, null, null, new
Timestamp(System.currentTimeMillis()));

Example 6-6 How to Switch an Application User in a Session in Java

Session lws = null;
Vector<String> listOfNamespaces;
static String user = "lwuser";
List<String> nslist1 = new ArrayList<String>();
...
manager.assignUser(lws, user, nslist1, nslist2, nslist3, new
Timestamp(System.currentTimeMillis()));
...
lws.switchUser("lwuser1",listOfNamespaces);

Enabling Real Application Security Application Roles
A Real Application Security application role is a role that can be granted only to a Real
Application Security application user or to another Real Application Security
application role. Real Application Security application roles are granted database
privileges through database roles. The database privileges are granted to a database
role, which in turn is granted to a Real Application Security application role. For more
information about Real Application Security application users and application roles,
refer to "Principals: Users and Roles".

This section describes the following operation associated with application roles:

• Enabling a Real Application Security Application Role

• Disabling a Real Application Security Application Role

• Checking If a Real Application Security Application Role Is Enabled

Enabling a Real Application Security Application Role
To enable a Real Application Security application role granted to the current
application user for the session, use the enableRole method of the Session interface
(see Example 6-7).

The enableRole method (in bold typeface) has no effect if the particular application
role is currently disabled. This operation requires a database round-trip.

Example 6-7 How to Enable a Real Application Security Application Role in
Java

static Session lws;
static Roles r1;
...
r1=new Role("HROLE1",null,0);
lws.enableRole(r1);

Disabling a Real Application Security Application Role
To disable a Real Application Security application role granted to the current user for
the session, use the disableRole method of the Session interface (see Example 6-8).
This operation requires a database round-trip. The disableRole method is in bold
typeface.

Chapter 6
About Managing Real Application Security Sessions

6-7

Example 6-8 How to Disable a Real Application Security Application Role in
Java

static Session lws;
static Roles r1;
...
r1=new Role("HROLE1",null,0);
lws.enableRole(r1);
...
lws.disableRole(r1);

Checking If a Real Application Security Application Role Is Enabled
To test if the specified application role is enabled in the Real Application Security
application session, use the isRoleEnabled method of the Session interface (see
Example 6-9). The isRoleEnabled method is in bold typeface.

This method does not have an associated database operation. You must have the
administerSession Real Application Security application privilege to call this method.

Example 6-9 How to Test If a Real Application Security Application Role Is
Enabled in Java

static Session lws;
...
lws.enableRole("HROLE1");
...
boolean b = lws.isRoleEnabled("HROLE1");

About Performing Namespace Operations as Session User
A namespace is a group of additional attributes of the session context. An application
uses a namespace to store application defined attribute-value pairs. The current
session user should have MODIFY_NAMESPACE (for namespace) and MODIFY_ATTRIBUTE
(for attribute) application privileges. For more information about namespaces, refer to
"About Using Namespace Templates to Create Namespaces".

This section describes how to perform the following activities:

• Creating Namespaces

• Deleting Namespaces

• Implicitly Creating Namespaces

• About Using Namespace Attributes

Creating Namespaces
To create a namespace in Java, use the createNamespace method of the Session
interface (see Example 6-10). The createNamespace method (in bold typeface) creates
a new session namespace using the namespace template document, whose name
matches with the specified name. If an event handler is specified in the template
document, then the specified event handler applies to all the namespaces created
using that template.

Chapter 6
About Managing Real Application Security Sessions

6-8

Note:

You can also create a namespace by passing a namespace name as a
parameter with the createSession and attachSession methods discussed in
the previous sections.

Example 6-10 How to Create a Namespace in Java

Session lws = null;
...
SessionNamespace ns = lws.createNamespace("TESTNS1");

Deleting Namespaces
To delete a namespace in Java, use the deleteNamespace method of the Session
interface (see Example 6-11). The deleteNamespace method (in bold typeface)
removes a namespace from a session.

Example 6-11 How to Delete a Namespace in Java

Session lws = null;
...
SessionNamespace ns = lws.createNamespace("TESTNS1");
...
lws.deleteNamespace("TESTNS1");

Implicitly Creating Namespaces
To implicitly create the namespace object to represents the session namespace, use
the getNamespace method of the Session interface (see Example 6-12). The
getNamespace method is in bold typeface. If the namespace specified already exists,
an error is thrown.

To retrieve a String representation of the namespace, use the toString method of the
SessionNamespace interface.

Example 6-12 How to Implicitly Create the Namespace in Java

Session lws = null;
...
SessionNamespace ns2 = lws.getNamespace("TESTNS1");

About Using Namespace Attributes
A session namespace manages the attributes that a single application module stores
for the duration of the session. The session namespace stores the attributes in a
single namespace, a single set of access control restrictions, or a single event handler
procedure that dispatches the attribute change events for that namespace.

This section describes how to perform the following activities:

• Creating a Session Namespace Attribute

• About Setting a Session Namespace Attribute

• Getting a Session Namespace Attribute

Chapter 6
About Managing Real Application Security Sessions

6-9

• Listing Attributes

• Resetting Attributes

• Deleting Attributes

Creating a Session Namespace Attribute
To create a session namespace attribute in Java, use the createAttribute method of
the SessionNamespace interface (see Example 6-13). The createAttribute method (in
bold typeface) creates a new attribute in the namespace.

Example 6-13 How to Create a Session Namespace Attribute in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...

About Setting a Session Namespace Attribute
To set a session namespace attribute in Java, use the setAttribute method of the
SessionNamespace interface.

Getting a Session Namespace Attribute
To retrieve a session namespace attribute in Java, use the getAttribute method of
the SessionNamespace interface (see Example 6-14). The getAttribute method (in
bold typeface) returns the attribute whose name is specified as the parameter.

Example 6-14 How to Retrieve a Session Namespace Attribute in Java

String name="empid';
String value="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa=ns.createAttribute(name,value);
...
String attrvalue = ns.getAttribute("empid").getValue();
ns.getAttribute("empid").setValue("newValue");
...

Listing Attributes
To list the attributes in the namespace, use the listAttributes method of the
SessionNamespace interface (see Example 6-15). The listAttributes method (in bold
typeface) returns a collection of the attribute names in the namespace

Example 6-15 How to List Attributes in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...
for (Enumeration e = ns.listAttributes() ; e.hasMoreElements() ;) {
 System.out.println(" -- " + e.nextElement());

Chapter 6
About Managing Real Application Security Sessions

6-10

}
...

Resetting Attributes
To reset an attribute in Java, use the resetAttribute method of the
SessionNamespace interface (see Example 6-16). The resetAttribute method (in bold
typeface) resets the attribute in the namespace to its default value.

Example 6-16 How to Reset an Attribute in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...
ns.resetAttribute("empid");
...

Deleting Attributes
To delete an attribute in Java, use the deleteAttribute method of the
SessionNamespace interface (see Example 6-17). The deleteAttribute method (in
bold typeface) deletes the particular attribute in the namespace.

Example 6-17 How to Delete an Attribute in Java

String name1="empid';
String value1="JB007";
SessionNamespace ns;
...
SessionNamespaceAttribute sa1=ns.createAttribute(name1,value1);
...
ns.deleteAttribute("empid");
...

About Performing Namespace Operations as Session Manager
Each namespace has an associated ACL to determine who can manipulate the
namespace and its attributes. If an application does not want the current session user
to manipulate the namespace, but allows a session manager to do it, this can be done
as session manager XSSessionManager.

XSSessionManager has a set of overloaded methods as Session, to manage the
namespace. The usage is similar to that described for session user in "About
Performing Namespace Operations as Session User".

Note that the session manager instance XSSessionManager may not be available to the
application code; only the trusted infrastructure layer can use the session manager to
manipulate such a secured namespace.

About Performing Miscellaneous Session-Related Activities
This section describes the following topics:

• About Getting the Oracle Connection Associated with the Session

• About Getting the Application User ID for the Session

Chapter 6
About Managing Real Application Security Sessions

6-11

• Getting the Session ID for the Session

• About Getting a String Representation of the Session

• Getting the Session Cookie

• Setting Session Inactivity Timeout as Session Manager

• Setting the Session Cookie as Session Manager

About Getting the Oracle Connection Associated with the Session
To get the Oracle connection associated with the session, if it is currently bound to
one, use the getConnection method of the Session interface.

About Getting the Application User ID for the Session
To get the application user identifier (ID) for a particular session, use the getUserId
method of the Session interface.

To check if the application user for the session is anonymous, use the isAnonymous
method of the Session interface.

Getting the Session ID for the Session
To get the session identifier (ID) for a particular session, use the getId method of the
Session interface (see Example 6-18). The getId method is in bold typeface.

Example 6-18 How to Get the Session ID for the Session in Java

Session lws=null;
...
System.out.println("The Session ID is" + lws.getId());

About Getting a String Representation of the Session
To get a String representation of the session, use the toString method of the Session
interface.

Getting the Session Cookie
To get the secure session cookie used for the session, use the getSessionCookie
method of the Session interface (see Example 6-19). The getSessionCookie method
is in bold typeface.

Example 6-19 How to Get the Secure Session Cookie in Java

static Session lws;
...
System.out.println(lws.getSessionCookie());

Setting Session Inactivity Timeout as Session Manager
To set the timeout on the session, use the setInactivityTimeout method of the
SessionManager interface. This method sets the session timeout in minutes.

The setInactivityTimeout method overrides the normal session timeout
configuration. The method is:

Chapter 6
About Managing Real Application Security Sessions

6-12

sessionManager.setInactivityTimeout(Session session, int minutes);

Setting the Session Cookie as Session Manager
To set the secure session cookie used for the session, use the setCookie method of
the SessionManager interface (see Example 6-20). The setCookie method (in bold
typeface) returns the secure session cookie used for this session. The method is:

sessionManager.setCookie(lws,"newCookieValue");

Example 6-20 How to Set the Secure Session Cookie in Java

static XSSessionManager manager;
...
manager.sessionManager.setCookie(lws,"chocolate chip");

Detaching an Application Session
To detach a Real Application Security application session in Java, use the
detachSession method of the XSSessionManager class (see Example 6-21). The
detachSession method (in bold typeface) detaches the session whose object it
accepts as a parameter. The detachSession method call commits all changes in the
request at the database level. A database round-trip is required to perform this
operation.

Example 6-21 How to Detach a Real Application Security Session in Java

Session lws = null;
static XSSessionManager manager;
static Connection lwsConn = null;
static String user = "lwuser";
String cookie;
...
lws = manager.createSession(lwsConn, user, cookie, null);
manager.attachSession(lwsConn, lws, null, null, null, new
Timestamp(System.currentTimeMillis()));
...
manager.detachSession(lws);
...

Destroying A Real Application Security Application Session
To destroy a Real Application Security application session in Java, use the
destroySession method of the XSSessionManager class (see Example 6-22). The
destroySession method (in bold typeface) accepts the database connection object
and a session object as parameters. After you call this method, the destroyed session
can no longer be accessed from any JVM. A database round-trip is required to perform
this operation and for create session as well.

Example 6-22 How to Destroy a Real Application Security Session in Java

Session lws = null;
static Connection lwsConn = null;
static XSSessionManager manager;
static String user = "lwuser";
String cookie;
...
lws = manager.createSession(lwsConn, user, cookie, null);

Chapter 6
About Managing Real Application Security Sessions

6-13

manager.attachSession(lwsConn, lws, null, null, null, new
Timestamp(System.currentTimeMillis()));
...
manager.detachSession(lws);
manager.destroySession(lwsConn, lws);
...

Authenticating Application Users Using Java APIs
Authenticating application users is a main security function needed by applications.
The XSAuthenticationModule class is used for authenticating application users. The
authenticate method of the XSAuthenticationModule class is used to verify the
application user credentials (see Example 6-23). The authenticate method is in bold
typeface.

Example 6-23 How to Authenticate Application Users in Java

boolean authOk = false;
String dbUser;
String passwd;
String host;
String port;
String sid;
...
authOk = XSAuthenticationModule.authenticate(host + ":" + port + ":" + sid, dbUser,
passwd);
...

About Authorizing Application Users Using ACLs
Authorization is another main security feature needed by applications. In Real
Application Security, the authorization policy comprises of the Access Control Lists
(ACLs) and the application privileges. They are defined in the Real Application
Security database and managed in a cache in the middle tier. The application
privileges are data privileges. Data privileges are used to define the access of a
function or operation to data. Once a function attaches a connection to the session,
any query passed through the connection is automatically enforced by the database
server.

The AclId class provides various methods to perform the following:

• Constructing an ACL Identifier

• Using the checkAcl Method

• About Getting Data Privileges Associated with a Specific ACL

Constructing an ACL Identifier
To construct an Access Control List (ACL) identifier, use one of the overloaded
parameterized constructors of the AclId class (see Example 6-24). If you want to
construct an ACL identifier from raw binary data, then use the following constructor:

public AclId(byte[] raw)

When you invoke this constructor, an ACL identifier, using raw binary returned from
the ora_get_aclids operator of a query, is created.

Chapter 6
Authenticating Application Users Using Java APIs

6-14

If you want to construct an ACL identifier from internal ACL identifiers, then use the
following constructor:

public AclId(java.util.List<java.lang.Long> ids)

When you invoke this constructor, it creates an ACL identifier using internal ACL
identifiers.

Example 6-24 How to Construct an ACL Identifier

Session lws = null;
static byte[] aclRaw;
...
AclId id = new AclId(aclRaw);
boolean ret = lws.checkAcl(aclRaw, "UPDATE_INFO");
...

Using the checkAcl Method
To check one or more ACLs for specified data privileges, use the checkAcl method of
the XSAccessController class. The data privileges are checked against one or more
ACLs defined in the AclId object. The checkAcl method returns true only when all the
data privileges are granted in the ACLs. It is important to note that all privileges need
not be granted in a single ACL. A session is needed for using the checkAcl method as
Example 6-25 indicates.

Example 6-25 demonstrates how to get the ACL associated with data privilege
privileges22.

Example 6-25 How to get an ACL for a Specified Data Privilege

boolean ret;
Session lws = null;
AclId id2 = new AclId(ids);
List <String> privileges22 = new ArrayList<String>();
...
ret = XSAccessController.checkAcl(lws, id2, privileges22);

About Getting Data Privileges Associated with a Specific ACL
To get a collection of data privileges that are granted in the given ACL, for the given
session, use the getPrivileges method of the Session class.

Note:

You use the checkAcl method for data security and the checkPrivilege
method for function security.

Human Resources Administration Use Case:
Implementation in Java

This section describes how to verify data security related application privileges at the
middle tier. This Java example is based on the Security Human Resources (HR)

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-15

scenario described in "Real Application Security: Putting It All Together". It uses the
EMPLOYEES table in the sample HR schema. The example uses two Real Application
Security application users DAUSTIN and SMAVRIS to illustrate Real Application Security
concepts. The example can be divided into the following modules:

• Setting Up the Mid-Tier Related Configuration

• Setting up the Connection and Initializing the Middle Tier

• Setting up the Session and Authorizing with Middle-Tier API

• Running a Query on the Database

• Performing Cleanup Operations

• The main Method

Setting Up the Mid-Tier Related Configuration

To set up the mid-tier configuration involves creating a DISPATCHER user and password
and granting this user the xscacfeadmin and xsessionadmin Real Application Security
administrator privileges.

exec xs_principal.create_user(name=>'dispatcher', schema=>'HR');
exec sys.xs_principal.set_password('dispatcher', 'password');

exec xs_principal.grant_roles('dispatcher', 'xscacheadmin');
exec xs_principal.grant_roles('dispatcher', 'xssessionadmin');

Setting up the Connection and Initializing the Middle Tier

This example uses the setupConnection method to create the connection to the
database. The setupConnection method accepts a String array as argument, where:

args[0]=Database user

args[1]=Password

args[2]=Host

This method also initializes the middle tier by calling the getSessionManager method of
the oracle.security.xs.XSSecurityManager class.

 public static void setupConnection(String[] args) throws Exception {
 mgrConnection =
 DriverManager.getConnection(args[2], "dispatcher", "password");

 mgr = XSSessionManager.getSessionManager(mgrConnection, 30, 2048000);

 appConnection = DriverManager.getConnection(args[2], args[0], args[1]);
 }

Setting up the Session and Authorizing with Middle-Tier API

This example uses queryAsUser method to set up the session and authorize with the
middle-tier checkAcl method. This example creates a session and attaches the
session, and then calls the queryEmployees method. The queryEmployees method in
"Running a Query on the Database" checks the ACL for the UPDATE privilege, and if
TRUE, it allows the update; it checks the ACL again for the VIEW_SALARY application
privilege, and if TRUE, it allows access to the SALARY column and displays all the
employees records including the sensitive data in the SALARY column. Then after
displaying the employees records, it detaches the session, and destroys the session.

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-16

 private static void queryAsUser(String user) throws SQLException {

 System.out.println("\nQuery HR.EMPLOYEES table as user \"" + user + "\"");

 try {
 Session lws = mgr.createSession(appConnection, user, null,null);
 mgr.attachSession(appConnection, lws, null, null, null, null, null);

 queryEmployees(lws);

 mgr.detachSession(lws);
 mgr.destroySession(appConnection, lws);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

Running a Query on the Database

This example uses the queryEmployees method to run a query on the HR database.

 public static void queryEmployees(Session lws) throws SQLException {

 Connection conn = lws.getConnection();
 String query =
 " select email, first_name, last_name, department_id, salary,
ora_get_aclids(emp) from hr.employees emp where department_id in (40, 60, 100) order
by email";

 Statement stmt = null;
 ResultSet rs = null;

 System.out.printf(" EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE |
VIEW_SALARY\n");

 try {

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {

 String email = rs.getString("EMAIL");
 String first_name = rs.getString("FIRST_NAME");
 String last_name = rs.getString("LAST_NAME");
 String department_id = rs.getString("DEPARTMENT_ID");
 String salary;

 if (((OracleResultSet)rs).getAuthorizationIndicator("SALARY") ==
AuthorizationIndicator.NONE) {
 salary = rs.getString("SALARY");
 }
 else {
 salary = "*****";
 }

 byte[] aclRaw = rs.getBytes(6);
 String update, viewSalary;
 if (XSAccessController.checkAcl(lws, aclRaw, "UPDATE")) {
 update = "true";
 }

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-17

 else {
 update = "false";
 }

 if (XSAccessController.checkAcl(lws, aclRaw, "VIEW_SALARY")) {
 viewSalary = "true";
 }
 else {
 viewSalary = "false";
 }

 System.out.printf("%9s|%12s|%12s|%6s|%8s|%8s|%8s\n", email,
 first_name, last_name, department_id,
 salary, update, viewSalary);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try { if (rs != null) rs.close(); } catch (Exception e) {};
 try { if (stmt != null) stmt.close(); } catch (Exception e) {};
 }
 }
}

The queryEmployees method is run for both application users DAUSTIN and SMAVRIS.

Performing Cleanup Operations

This examples uses the cleanup method for system cleanup operations.

 public static void cleanupConnection() throws Exception {
 mgrConnection.close();
 appConnection.close();

 }

The main Method

This section contains the main method for the Java example discussed. This section
also contains the different packages that you must import to run the program.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.ArrayList;
import java.util.List;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.OracleResultSet;
import oracle.jdbc.OracleResultSet.AuthorizationIndicator;

import oracle.security.xs.Role;
import oracle.security.xs.Session;
import oracle.security.xs.XSAccessController;
import oracle.security.xs.XSSessionManager;

/**
 * HR demo java version, check data security related privilege at mid-tier

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-18

 */
public class HRDemo {

 static Connection mgrConnection = null;
 static Connection appConnection = null;
 static XSSessionManager mgr = null;
 static String user = null;

 public static void main(String[] args) {

 try {
 DriverManager.registerDriver(new OracleDriver());

 if (args.length >=3) {
 user = args[0];
 } else {
 System.out.println("Usage HRDemo user pwd dbURL");
 System.exit(1);
 }

 setupConnection(args);

 queryAsUser("DAUSTIN");
 queryAsUser("SMAVRIS");

 cleanupConnection();

 } catch (Exception e1) {
 e1.printStackTrace();
 }
 }

1. Running the Security HR demo in Java assumes that the set up script described in
"Setting Up the Security HR Demo Components" has been run to set up the Real
Application Security components.

2. Compile the Java code.

$ORACLE_HOME/jdk6/bin/javac -classpath $ORACLE_HOME/rdbms_ho/jlib/
xs.jar:$ORACLE_HOME/dbjava/lib/ojdbc6.jar HRdemo.java

Note:

You must use JDK 6 with xs.jar and ojdbc6.jar, which are located in
the Oracle home directory. Different jars and JDK may not work.

3. Run the Java code.

$ORACLE_HOME/jdk6/bin/java -classpath $ORACLE_HOME/rdbms_ho/jlib/
xs.jar:$ORACLE_HOME/dbjava/lib/ojdbc6.jar

HRdemo db_hr db_hr jdbc:oracle:thin:@myserver:myport:mysid

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-19

Output
Running the Security HR demo in Java assumes that the set up script described in
"Setting Up the Security HR Demo Components" has been run to set up the Real
Application Security components. When you run the Security HR demo, results of two
queries are returned.

The first query runs with application user DAUSTIN, who has application roles EMP_ROLE
and IT_ROLE, so he can view employee records in the IT department, but he cannot
view the SALARY column except for his own salary record. The results of the query are
as follows:

Query HR.EMPLOYEES table as user "DAUSTIN"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| *****| false| false
 BERNST| Bruce| Ernst| 60| *****| false| false
 DAUSTIN| David| Austin| 60| 4800| false| true
 DLORENTZ| Diana| Lorentz| 60| *****| false| false
 VPATABAL| Valli| Pataballa| 60| *****| false| false

Note that application user DAUSTIN can only view the SALARY column data for his own
record, and no others.

The second query runs with application user SMAVRIS, who has application roles
EMP_ROLE and HR_ROLE, so she can view and update all the employee records. The
results of the query are as follows:

Query HR.EMPLOYEES table as user "SMAVRIS"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| 9000| true| true
 BERNST| Bruce| Ernst| 60| 6000| true| true
 DAUSTIN| David| Austin| 60| 4800| true| true
 DFAVIET| Daniel| Faviet| 100| 9000| true| true
 DLORENTZ| Diana| Lorentz| 60| 4200| true| true
 ISCIARRA| Ismael| Sciarra| 100| 7700| true| true
 JCHEN| John| Chen| 100| 8200| true| true
 JMURMAN| Jose Manuel| Urman| 100| 7800| true| true
 LPOPP| Luis| Popp| 100| 6900| true| true
 NGREENBE| Nancy| Greenberg| 100| 12008| true| true
 SMAVRIS| Susan| Mavris| 40| 6500| true| true
 VPATABAL| Valli| Pataballa| 60| 4800| true| true

Note that application user SMAVRIS can view all the employee records, including all
data in the SALARY column.

Chapter 6
Human Resources Administration Use Case: Implementation in Java

6-20

7
Oracle Fusion Middleware Integration with
Real Application Security

Real Application Security adds external user and role support for application
integration, that can be used, for example, with Oracle Fusion Middleware. For Oracle
Fusion Middleware, the users and roles are also externalized to a common, single
repository with centralized management and single authentication of the user interface
using the Authorization Policy Manager. From a Real Application Security perspective,
the integrated users and roles (including application roles) are externalized principals
because Oracle Fusion Middleware manages them externally. The mid-tier
initialization and authorization operations are the same as those described in Using
Real Application Security in Java Applications .

This chapter describes the following topics:

• About External Users and External Roles

• Session APIs for External Users and Roles

About External Users and External Roles
An external user is an end-user accessing a service. User information is stored in the
identity store, typically instantiated by the WebLogic Authenticator. This user is neither
a database user nor a Real Application Security application user. An external user
does not have any footprint in the database. But, an external user needs to access the
database for application data. Therefore, a Real Application Security context (session)
is established for such a user to control the user's access to the required data.

An anonymous user is an unauthenticated user, or a user whose credentials have not
been validated. An anonymous user is permitted to access only unprotected resources
such as public data from a database. An application can enable or disable the use of
anonymous users.

An external role or group is a collection of users and other groups, which can be
hierarchical. For example, a group can include arbitrarily nested groups.

An external application role is a collection of users, groups, and application roles,
which can be hierarchical. This role is specific to the application, defined by the
application policy, and may not be known to the J2EE container. Application roles are
scoped because they are visible only when the application runs. They can be mapped
to other application roles defined in the same application scope and also to enterprise
users or groups. Application roles are used in authorization decisions.

Similar to external users, external roles and application roles have no footprint in the
Real Application Security system. They are used to control the way the Real
Application Security ACLs grant data access to an application.

External roles and application roles also enforce the details of data access. External
users need some basic database privileges, typically the object privilege to run
SELECT on an application table. These privileges can be granted through a Real
Application Security dynamic application role, which is enabled when a user session is

7-1

attached. For example, to grant privileges to an external user or role, specify the
principal type as XS_ACL.PTYPE_EXTERNAL in an ACE list when creating an ACL. See
the "CREATE_ACL Procedure" for more information.

Session Modes for External Users

Real Application Security supports the following two modes of operation for sessions:

• Secure Mode

In secure mode, data security is enforced at the database server. By default, a
session is created in a secure mode for all users.

• Trusted mode

A trusted mode is a mode in which data security is enforced at the middle tier and
not at the database server. In such a mode, the data security implemented by Real
Application Security is bypassed. So, creating a session in trusted mode is a
privileged operation.

Trusted mode is allowed only for external users, and only when the dispatcher has
CREATE_TRUSTED_SESSION privilege. This privilege can be granted to the dispatcher
user as follows:

XS_ADMIN_UTIL.grant_system_privilege('CREATE_TRUSTED_SESSION','dispatcher',
XS_ADMIN_UTIL.PTYPE_XS);

Session APIs for External Users and Roles
This section describes the following topics for external users and roles:

• Namespace for External Users

• Creating a Session

• Attaching a Session

• Assigning a User to a Session

• Saving a Session and Aborting a Session

Namespace for External Users
The namespaces for external users are enhanced with attribute manipulation features
during creating, attaching, and assigning a session. External users are able to perform
the following activities:

• Creating namespace with attributes while creating a session

• Setting namespace attributes while attaching a session and assigning a user

• Saving a session and leaving it as attached

Creating a Session
To create a Real Application Security application session, use the createSession
method of the XSSessionManager class.

For external users, this method creates a Session object on the server as well as its
corresponding middle-tier representation with namespaces and attributes. This method
also creates the Namespaces and sets corresponding attributes given in the

Chapter 7
Session APIs for External Users and Roles

7-2

Namespace/AttributeValue. The cookie can be used to identify the newly created Real
Application Security application session in future calls, until the cookie value is
changed or the session is destroyed.

Syntax

public abstract Session createSession(java.sql.Connection conn,
 ExternalUser eUser,
 java.lang.String cookie,
 java.util.Collection<NamespaceValue> nav)
 throws InvalidXSUserException,
 AccessDeniedException,
 java.sql.SQLException,
 XSSessionException,
 InvalidXSNamespaceException

public abstract Session createSessionTrusted(java.sql.Connection conn,
 ExternalUser externalUser,
 java.lang.String cookie,
 java.util.Collection<NamespaceValue> nameSpaceValues)
 throws InvalidXSUserException,
 AccessDeniedException,
 java.sql.SQLException,
 SQLException,
 XSException,
 InvalidXSNamespaceException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

eUser or
externalUser

The external user associated with the session

cookie The session cookie used to identify the external user

nav or
nameSpaceValues

A list of namespaces with corresponding attributes to be created for
the namespaces

Example

Example 7-1 demonstrates how to create a Real Application Security session for
external users. The createSession method is in bold typeface.

Example 7-1 Creating a Real Application Security Session for External Users

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String trituser = "TUSER01";
String cookie = "some_cookie";

Chapter 7
Session APIs for External Users and Roles

7-3

String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();
AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);
NamespaceValue nav = new NamespaceValue("NST01",nsavList);
List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

/* create session with external user name in secure mode with namespace attr-vals
and cookie */
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie, nsList);
sm.destroySession(lws_conn, lws);

/*Create external user session in secure mode*/
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), null, null);
sm.destroySession(lws_conn, lws);

/*Create external user session in secure mode with namespace attribute values */
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), null, nsList);
sm.destroySession(lws_conn, lws);

/* create session with external user name in secure mode with cookie */
lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie, null);
sm.destroySession(lws_conn, lws);

/* create trusted session with only external user name */
lws = sm.createSessionTrusted(lws_conn, new ExternalUser(extuser, extuuid), null,
null);
sm.destroySession(lws_conn, lws);

/* create session with RAS user name in secure mode with namespace and cookie */
lws = sm.createSession(lws_conn, trituser, cookie, nsList);
sm.destroySession(lws_conn, lws);

Attaching a Session
To attach an application session, use the attachSession method of the
XSSessionManager class.

For external users, this method attaches the JDBC connection to the specified session
object. This method also sets the dynamic application roles, external roles,
authentication time, and creates namespaces for the session. It also gives a list of a
namespace and its corresponding namespace attributes to be created and set. If the
namespace does not exist, then this method creates the namespace, and then sets
the corresponding attributes.

Syntax

public abstract void attachSession(
 java.sql.Connection conn,
 Session session,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<ExternalRole> externalRoles,

Chapter 7
Session APIs for External Users and Roles

7-4

 java.util.Collection<NamespaceValue> nav,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSSessionException,
 InvalidXSNamespaceException

public abstract Session attachSessionByCookie(
 java.sql.Connection conn,
 java.lang.String cookie,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<oracle.security.xs.ExternalRole> externalRoles,
 java.util.Collection<oracle.security.xs.NamespaceValue> namespaceValues,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSException,
 InvalidXSNamespaceException

public abstract Session attachSessionByID(
 java.sql.Connection conn,
 java.lang.String id,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<oracle.security.xs.ExternalRole> externalRoles,
 java.util.Collection<oracle.security.xs.NamespaceValue> namespaceValues,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSException,
 InvalidXSNamespaceException

Parameters

Parameter Description

conn The database connection to be attached to the application
session

session The Session object to be attached

cookie The session cookie

id The session identifier

enabledDynamicRoles A collection of dynamic application role names to be enabled

disabledDynamicRoles A collection of dynamic application role names to be disabled

externalRoles A collection of external roles to be enabled

nav or namespaceValues A list of namespaces with corresponding attributes to be set

authenticationTime The authentication time to be sent to the database server

Example

Example 7-2 demonstrates how to attach a Real Application Security session for
external users. The attachSession method is in bold typeface.

Chapter 7
Session APIs for External Users and Roles

7-5

External Role Behavior while Attaching a Session

• After an external role is enabled for a session, it is stored as part of the session
context as an ID. This role ID is used in access control, when you call the
checkAcl method on both middle tier and database server. This is same as regular
Real Application Security application role or dynamic application role.

• A Real Application Security ID is assigned for every external role passed while
attaching a session, whether the role is referred by ACL or not.

• The scope of the external role is within the boundary of attaching or detaching a
session. An external role cannot be enabled for attaching multiple sessions, and it
does not need to be explicitly disabled. So, the roles assigned for attaching the
first session will not be automatically enabled while attaching the next session,
unless the roles are assigned again.

This behavior is completely different from the behavior of regular Real Application
Security application roles or dynamic application roles, where the application roles
assigned for attaching the first session are automatically enabled while attaching
the next session.

• After a session is attached, the external role remains consistent till detaching and
reattach the session. The role may even be revoked for the user.

Example 7-2 Attaching a Real Application Security Session for External Users

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
.
.
.
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;
Session lws2 = null

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();

AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add("DYNROLE001");
dynamicRoles.add("DYNROLE002");

Chapter 7
Session APIs for External Users and Roles

7-6

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add(new ExternalRole("EXTPRIN01"));
extRoles.add(new ExternalRole("MYEXTPRIN02"));

lws = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie +
"secure", nsList, false);
sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
null, null);
sm.detachSession(lws);
sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
null, new Timestamp(System.currentTimeMillis()));
sm.detachSession(lws);
sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
nsList, null);
sm.detachSession(lws);
sm.attachSession(lws_conn, lws, enabledDynamicRoles, disabledDynamicRoles, extRoles,
nsList, new Timestamp(System.currentTimeMillis()));
sm.detachSession(lws);

lws2 = sm.createSession(lws_conn, new ExternalUser(extuser, extuuid), cookie +
"trusted", nsList, true);
lws2 = sm.attachSessionByCookie(lws_conn, lws.getSessionCookie(), null,
enabledDynamicRoles, disabledDynamicRoles, extRoles, null, null);
sm.detachSession(lws2);
lws2 = sm.attachSessionByCookie(lws_conn, lws.getSessionCookie(), null,
enabledDynamicRoles, disabledDynamicRoles, extRoles, nsList, new
Timestamp(System.currentTimeMillis()));
sm.detachSession(lws2);

Assigning a User to a Session
To assign a name to a previously anonymous user, use the assignUser method of the
XSSessionManager class.

For external users, this method assigns a named user to a previously anonymous
user, sets the dynamic application roles, external role, and authentication time. If a list
of Namespace/Attribute values is given, this method creates each namespace that
does not exist, and sets the corresponding attributes.

Syntax

public abstract void assignUser(
 Session session,
 ExternalUser targetUser,
 java.util.Collection<java.lang.String> enabledDynamicRoles,
 java.util.Collection<java.lang.String> disabledDynamicRoles,
 java.util.Collection<ExternalRole> externalRoles,
 java.util.Collection<NamespaceValue> naValues,
 java.sql.Timestamp authenticationTime)
 throws java.sql.SQLException,
 AccessDeniedException,
 InvalidSessionException,
 XSSessionException,
 InvalidXSNamespaceException

Chapter 7
Session APIs for External Users and Roles

7-7

Parameters

Parameters Description

session The session object to assign the user to

targetUser An ExternalUser object initialized based on authentication

enabledDynamicRoles A list of dynamic application role names to be enabled

disabledDynamicRoles A list of dynamic application role names to be disabled

externalRoles A collection of external roles to be enabled

namespaceValues A list of namespaces with corresponding attributes to be set

authenticationTime The a timestamp indicated when the user authenticated

Example

Example 7-3 demonstrates how to assign a Real Application Security session to
external users. The assignUser method is in bold typeface.

Example 7-3 How to Assign a Real Application Security Session to External
Users

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
.
.
.
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();

AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add("DYNROLE001");
dynamicRoles.add("DYNROLE002");

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();

Chapter 7
Session APIs for External Users and Roles

7-8

extRoles.add(new ExternalRole("EXTPRIN01"));
extRoles.add(new ExternalRole("MYEXTPRIN02"));

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, null);
sm.detachSession(lws);

lws = sm.createAnonymousSession(lws_conn, cookie + "secure", nsList, false);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, new
Timestamp(System.currentTimeMillis()));
sm.detachSession(lws);

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, null, nsList, null);
sm.detachSession(lws);

Saving a Session and Aborting a Session
To save the changes of a session at the database server and keep the session still
attached, use the saveSession method of the XSSessionManager class.

For external users, this method saves the current session. Similar to the
detachSession method, this method commits all session changes to the back end and
a database roundtrip is required to perform this operation. But, unlike the
detachSession method, this method keeps the session attached. This method is
mainly used to save an application context (namespace).

To abort the changes of a session at the database server and detach from the
session, use the abortSession method of the XSSessionManager class.

Syntax

public abstract void saveSession(Session session)
 throws java.sql.SQLException,
 NotAttachedException,
 XSSessionException

public abstract void abortSession(Session session)
 throws java.sql.SQLException,
 NotAttachedException,
 XSException

Example

Example 7-4 demonstrates how to save a Real Application Security external user
session. The saveSession method is in bold typeface.

Example 7-4 How to Save a Real Application Security External User Session

.

.

.
static Connection lws_conn =null;
static XSSessionManager sm = null;
.
.

Chapter 7
Session APIs for External Users and Roles

7-9

.
lws_conn = DriverManager.getConnection(lws_conn_string, username, password);
sm = XSSessionManager.getSessionManager(privConn,20,29999999);
.
.
.
String cookie = "some_cookie";
String extuser = "ExtPrincp";
String extuuid = "ExtPrincp";

Session lws = null;

List<AttributeValue> nsavList = new ArrayList<AttributeValue>();

AttributeValue nsav1 = new AttributeValue("ATTR01","value1");
nsavList.add(nsav1);
AttributeValue nsav2 = new AttributeValue("ATTR02","value2");
nsavList.add(nsav2);

NamespaceValue nav = new NamespaceValue("NST01",nsavList);

List<NamespaceValue> nsList = new ArrayList();
nsList.add(nav);

List <String> dynamicRoles = new ArrayList <String>();
dynamicRoles.add("DYNROLE001");
dynamicRoles.add("DYNROLE002");

List <ExternalRole> extRoles = new ArrayList <ExternalRole>();
extRoles.add(new ExternalRole("EXTPRIN01"));
extRoles.add(new ExternalRole("MYEXTPRIN02"));

lws = sm.createAnonymousSession(lws_conn, cookie + "trusted", nsList, true);
sm.attachSession(lws_conn, lws, null, null, null, null, null);
sm.assignUser(lws, euser, dynamicRoles, dynamicRoles, extRoles, null, null);
lws.deleteNamespace("NST01");
sm.saveSession(lws);

Chapter 7
Session APIs for External Users and Roles

7-10

8
Application Session Service in Oracle
Fusion Middleware

Real Application Security provides an application session service in Oracle Fusion
Middleware to set up an application session transparently and securely that supports
existing application users, roles, and security context. This application session service
is a servlet filter that is responsible for application session setup and a set of APIs that
the application can use with the application session. This application session service
supports user and roles managed externally by Oracle Fusion Middleware.

Beginning with Oracle Database 12c Release 1 (12.1.0.2), this application session
service supports a Java EE Web application using Oracle Platform Security Service
(OPSS) as the application security provider. This application session service can be
deployed to the Java EE container that OPSS can support, together with the
application.

This chapter describes the following topics:

• About Real Application Security Concepts

• About Application Session Service in Oracle Fusion Middleware

• About the Application Session Filter

• About Deployment

• About Application Configuration of the Application Session Filter

• Domain Configuration: Setting Up an Application Session Service to Work with
OPSS and Oracle Fusion Middleware

• About Application Session APIs

• Human Resources Demo Use Case: Implementation in Java

About Real Application Security Concepts
As an Oracle Database authorization system, Real Application Security supports
application security by enforcing who (application user) can do what application-level
operations (ApprovePurchaseOrder, ViewSSN) on which database resource
(purchase order records of employees under my report, my SSN). An application
session is used to enforce application security. Typically, the users and roles are
provisioned externally, that is, enterprise users are provisioned in an identity store and
application roles are managed in a policy store, such as, Oracle Identity Management
and Oracle Entitlement Server (OES).

Application Users and Roles Managed Externally

Real Application Security supports users and roles that are provisioned by an external
party, such as Oracle Entitlement Server for managing application users and roles
provisioning, while OPSS provides a runtime security framework for enforcing security
for application roles. Theses are referred to as external application users and

8-1

application roles (see Oracle Fusion Middleware Integration with Real Application
Security for more information.)

Real Application Security also has users and roles for the application natively
managed in the database, and these are referred to as Real Application Security
application users and application roles (see Configuring Application Users and
Application Roles for more information).

For external application users and application roles, Real Application Security does not
manage user provisioning including users' role assignment. However, for native
application users and application roles in the database, grants of application roles to
application users, database roles to application roles, and application roles to
application roles are managed in the database. Both Real Application Security
application users and application roles, and external application users and application
roles are supported in an application session, and can be used in a data security
policy. An application privilege can be granted to users managed both in the identity
store externally or in the database natively.

Application Session in Oracle Fusion Middleware

An application session represents an application user's runtime security context, which
includes the user identity, database and application roles, and namespace attribute
values. The application session here in Oracle Fusion Middleware is using externally
managed user and roles. See Configuring Application Sessions for more information
about configuring an application session.

Session Manager in Oracle Fusion Middleware

In Real Application Security, the session manager authorizes the application session
operation and has the necessary privileges to create or modify the application session.
The application code or application database connection should not have these
privileges. To the database, the session manager is a Real Application Security direct
logon user (see "About Creating a Direct Login Application User Account"). It
communicates with the database at the beginning of application session service
initialization to build a trust relation with the database server based on authorization
credentials. This mechanism is used subsequently to further authorize the application
session operations on behalf of the application.

Dynamic Roles in Oracle Fusion Middleware

Other than the application roles, an application session supports a dynamic role. This
is a type of Real Application Security role that must be defined natively in the database
(see "Dynamic Application Roles"). This role is not granted to the user or other roles. It
must be enabled programmatically in the application session at run time. This can be
done by the Real Application Security filter automatically or by the trusted application
code explicitly.

The dynamic role can be defined as request scope or session scope. Session scope
means the enabled dynamic role is still enabled in the next attach, unless you explicitly
specify that it is disabled in the next attach. Request scope means that the role is
disabled after the application session is detached from the connection.

Dynamic role serves two general purposes:

• Object privilege

An application user is not a database user. These object privileges can be granted
to a Real Application Security dynamic role when application users and roles are

Chapter 8
About Real Application Security Concepts

8-2

provisioned in external identity stores. When the Real Application Security filter
sets up the application session for the application user, it enables the dynamic role
in every application session accessing the current application. The dynamic role is
specific to the current application only.

• Application Session privilege elevation

Certain trusted application code must temporarily have higher privileges in order to
do some database operations. This is supported by enabling a Real Application
Security dynamic role during application session attach from the trusted code
declared using a Java code based policy. The role should be disabled upon
detach.

One use case is application namespace setup where session namespace
attributes are secured in Real Application Security in a fine grained manner. The
namespace must be predefined at the database as a namespace template. Upon
definition, in the associated ACL of the namespace authorization policy can be
specified, that is, who (user/role) can do what (modify_namespace,
modify_attribute) on the namespace. To ensure that only trusted application code
can modify the namespace attributes, the privileges are granted to a dynamic role.
Also, the dynamic role can only be programmatically enabled by certain trusted
application code identified by Java code permission. This supports the use case
that only the trusted code can set up certain namespaces.

About Application Session Service in Oracle Fusion
Middleware

Figure 8-1 shows application session service as it is implemented in Oracle Fusion
Middleware.

Chapter 8
About Application Session Service in Oracle Fusion Middleware

8-3

Figure 8-1 Application Session Service in Oracle Fusion Middleware

Security Store

ApplicationSessionService.attachSession(conn);

stmt = conn.createStatement();

rs = stmt.executeQuery(query);

ApplicationSessionService.detachSession(conn);

Connection Pool

Database

Application
Session

Authentication Server

Single Sign-On

WebLogic Server

Application Session

Human Resources

Conn1 Conn2 Conn3

JDBC

Identity Store

WebLog

App

Hum

Client

Authenticator

OPSS Filter

Real Application
Security Filter

Connection Pool

Subject

Code

Real Application
Security API

HumHum

Con

An application session service is an integrated solution with Oracle Fusion
Middleware, to leverage Oracle Fusion Middleware to provide an application session
at the database. In Oracle Fusion Middleware:

• The application user is authenticated by the container. In WLS, typically the
authenticator works with the SSO server to authenticate the user.

• The application user and group are managed by the Identity Store.

• OPSS is an application security framework to set up the application security
context based on the container's security context. See Oracle Application Server
Containers for J2EE Security Guide for more information about application security
with OPSS.

The Real Application Security servlet filter sets up the application session
transparently and synchronizes the application session with the OPSS subject. The
server filter code consists of a set of APIs that function in the application session to:

• Attach, detach, and destroy the session (see "About Application Session APIs")

• Provide privilege elevation (see "About the Privilege Elevation API")

• Provide namespace operations (see "About Namespace APIs")

Chapter 8
About Application Session Service in Oracle Fusion Middleware

8-4

• Provide authorization (see "About the Check Privilege API")

Real Application Security provides:

• APIs that support external users and roles in the application session

• Authorizes the session operation through the session manager

• Support for fine-grained access control on namespace

About the Application Session Filter
The Real Application Security application session filter is a standard Java EE servlet
filter that implements the javax.servlet.Filter interface. The basic function of this
filter is to set up an application session transparently according to the authenticated
user's security context (OPSS Subject).

This application session filter allows the application session to be continuously shared
among applications. It cannot be created for every request, but must be tied to a
stateful context and reused for the same user until logout. For web applications, the
http session is such a context. It is maintained by the container for the same user's
continuous access from logon until logout, across multiple single sign-on applications
or containers.

The http session object is always accessible from the ServletFilter, but may not be
accessible from the generic application code.

This section includes the following topic: About the Application Session Filter
Operation.

About the Application Session Filter Operation
The application session filter sets up the application session in the following manner:

• It creates an application session at the user's first access.

If the user has been logged in, it creates the application session as the user in the
authentication context (OPSS Subject).

If the user has not been logged in, it creates the application session as an
anonymous user.

• It reuses the existing application session instance for the user's subsequent
access to the same application.

• It shares the same application session among multiple applications when multiple
applications access the same Real Application Security database.

• It synchronizes the application session at the beginning of each http request to
make sure the user and roles in the current application session are always
synchronized with the authentication context (OPSS Subject), and only the
configured dynamic roles are enabled for every application session.

The synchronization is done by pushing the OPSS Subject values to the server
and getting back the server computed values for the current application session.

User and roles in the application session are fixed once the filter is fired before
application code execution. The filter is responsible for synchronizing the user and
roles, not application code.

Chapter 8
About the Application Session Filter

8-5

Application code is responsible for the namespace setup. The filter can only help to
bring back the previous namespace. See "About Namespace APIs" for more
information about namespace setup.

The application session is cached locally based on the http session ID. The http
session is managed by the container. Real Application Security has an application
session listener to listen for the container's application session event. When the http
session is invalidated by the container, the application session is removed from the
local cache by the Real Application Security listener.

About Deployment
Real Application Security application session service is delivered in one jar file,
xsee.jar. Oracle recommends that you deploy the xsee.jar jar file to a common
directory, not together with the web application (WAR file inside web-inf/lib). In this
way, you can separate the jar from application code, and grant some special code
based permissions to only the xsee.jar jar file, and not to the application code.

For the xsee.jar jar file to get the session manager's credential from the CSF store,
you must grant code based permission CredentialAccessPermission to the xsee.jar
jar file. The filter internally uses Real Application Security session manager to
authorize the session operation.

In Example 8-1, the xsee.jar jar file is deployed to WLS's domain /lib directory. The
java policy file (system-jazn-data.xml) has the CredentialAccessPermission grant,
assuming that the session manager's key/map is using the default value.

For deployment instructions, see the section about standard Java EE deployment in
Understanding Oracle WebLogic Server.

For a simple and quick method of deploying an application for testing or evaluation,
use Auto-Deployment. This is an easier way to deploy the application session service
by packaging everything (class, web.xml) in to one WAR file, and copying it to the
Weblogic autodeploy directory. See the section about auto-deploying applications in
development domains in Deploying Applications to Oracle WebLogic Server.

To create the session manager's credential, see Step 2 in "Manual Configuration" for
more information.

Example 8-1 Granting the Code-Based Permission CredentialAccessPermission to the xsee.jar
File

<grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/lib/xsee.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>context=SYSTEM,mapName=oracle.rdbms.ras, keyName=default</name>
 <actions>read</actions>
 </permission>
 </permissions>
 </grant>

Chapter 8
About Deployment

8-6

About Application Configuration of the Application Session
Filter

The filter is configured in the application's web.xml configuration file in a standard way.
It can be configured to apply to only specific URLs. This avoids unnecessary
application session setup for certain pages for which it does not need database
access.The filter assumes that user authentication has been done and an
authentication context has been established. In OPSS, the user's application context is
computed at the OPSS filter, so the OPSS filter must be deployed ahead of the
application session filter in the filter chain.The application session filter uses the
following web.xml parameters:

• application.datasource

The application uses this application.datasource parameter. The application
session filter requires this parameter for initialization, application session setup
and namespace operations.

• dynamic.roles

A list of Real Application Security dynamic roles to be used are separated by a
comma(,). The dynamic roles must already be created at the database as session
scope; otherwise, the following exception is thrown: ORA-46055: invalid role
specified.

The roles are enabled for every application session in the current application, and
automatically disabled in other applications. Note that these dynamic roles are
enabled for the anonymous session. You should not over grant any privileges to
dynamic roles if they are not needed for every application session. Normally, only
object privileges should be granted to the dynamic roles.

For any tables not protected by Real Application Security, the application still has
the flexibility to use the database connection pool user for access, not the
application user. In that case, no attach application session API call is needed and
no object privilege is granted to the dynamic roles.

• session.manager.pwd.key and session.manager.pwd.map

The session.manager.pwd.key parameter and the session.manager.pwd.map
parameter (fixed as oracle.rdbms.ras) point to a credential (user ID and
password) in the credential store. The session.manager.pwd.key parameter is
used to retrieve the session manager's credential. Currently, the OPSS CSF
credential store is used to store the credential, and the CSF API is used to retrieve
the credential at run time. In addition, both the session manager's user ID and
password can be retrieved from the store.

The default value is default for the session.manager.pwd.key parameter. If the
application is using the default credential, then this parameter can be omitted.

If an application wants to use a specific session manager, not the default
credential, the application's administrator must create the credential with a
different key name, and configure it using this parameter. See configuring the
OPSS security store in Oracle Application Server Containers for J2EE Security
Guide for more information.

• session.manager.pool.min and session.manager.pool.max

Chapter 8
About Application Configuration of the Application Session Filter

8-7

The session manager's connection is also used to query the data security policy
(ACL) at the mid-tier. This connection is managed as a pool. The
session.manager.pool.min parameter determines the minimum size of the pool.
This parameter is optional. The default value is 1.

The session.manager.pool.max parameter determines the maximum size of the
pool. This parameter is optional. The default value is 3.

If the privilege check is not needed, the pool size should be set to 1 for both
session.manager.pool.min and session.manager.pool.max values.

Example 8-2 shows an application session filter sample configuration that includes the
servlet filter, its parameters, and the listener. Any parameters, which have default
values, are omitted from this example.

Example 8-2 Application Session Filter Sample Configuration

<filter>
 <filter-name>ApplicationSessionFilter</filter-name>
 <filter-class>oracle.security.xs.ee.session.ApplicationSessionFilter</filter-class>
 <init-param>
 <param-name>application.datasource</param-name>
 <param-value>jdbc/myDBDS</param-value>
 </init-param>
 <init-param>
 <param-name>dynamic.roles</param-name>
 <param-value>my_drole</param-value>
 </init-param>
</filter>
<listener>
 <description>RAS Session Listener</description>
 <listener-class>oracle.security.xs.ee.session.ApplicationSessionListener</listener-class>
</listener>

Domain Configuration: Setting Up an Application Session
Service to Work with OPSS and Oracle Fusion Middleware

This section describes the prerequisites and configuration required for an application
to use an application session service.

This section includes the following topics:

• Prerequisites

• Manual Configuration

• About Automatic Configuration

Prerequisites
To use Real Application Security, both the application session service and OPSS must
be deployed and configured in a Oracle Fusion Middleware's Java EE container.

For WebLogic server, the prerequisites include:

• A JRF based WLS domain (OPSS is built-in) certified with the Oracle database
12c JDBC driver. The required JDBC jars could be many, not just one driver jar
depending on the features you need (UCP, I18N, SQLXML and so forth).

Chapter 8
Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware

8-8

• Oracle Database 12c Release 1 (12.1) and later

For WebLogic server 10.3.6 and 12.1.2 JRF release (part of Oracle Fusion
Middleware), the JDBC driver shipped is not Oracle Database 12c compatible. You
must obtain the Oracle Database 12c JDBC jars (ojdbc6.jar or ojdbc7.jar and other
matched jars depending on the features you need), and add these jars to the front of
your WebLogic Server's classpath. For detailed instruction, see Administering JDBC
Data Sources for Oracle WebLogic Server, Section B.

If there is version mismatch between the JDBC driver and the database, the Real
Application Security filter initialization fails with an error message. For example,

• If the Oracle Database 11g JDBC driver is being used with Oracle Database 12c,
the following error message appears in the server log: Fail to initialize RAS
session manager due to method missing.

• If the Oracle Database 12c JDBC driver is being used with Oracle Database 11g,
the following error message appears in the server log: ORA-00439: feature not
enabled: Fusion Security.

Manual Configuration
Follow these manual configuration steps for an application to use an application
session service. These steps should work for both WebLogic 10.3.6 and 12.1.2, JRF
release.

1. Install the Real Application Security jars.

Copy the xsee.jar and xs.jar (ORACLE_HOME/jlib/) to a common directory that
applications can consume. For WebLogic, a good location is DOMAIN_HOME/lib.
This allows Real Application Security jars to be shared by many applications
deployed in the same domain.

2. Create a Real Application Security session manager credential.

As discussed in "About Application Configuration of the Application Session Filter",
a session manager's credential must be created in OPSS's credential store. This
can be done using an OPSS script. For details about how to use OPSS script, see
the section about the OPSS script in Oracle Application Server Containers for
J2EE Security Guide.

createCred(map='oracle.rdbms.ras', key='default', user='myUsr',
password='myPassword')

The session manager's credential is stored in the default credential store, which is
configured for the domain. The map name must be oracle.rdbms.ras, which is
predefined for the Real Application Security application session service. This is
fixed and cannot be changed.

3. Grant code permission to the Real Application Security jar files.

As discussed in "About Deployment", the CSF permission must be granted to the
xsee.jar file. This is also done using OPSS script.

grantPermission(codeBaseURL='file:${domain.home}/lib/xsee.jar',
permClass='oracle.security.jps.service.credstore.CredentialAccessPermission',
permTarget='context=SYSTEM,mapName=oracle.rdbms.ras,keyName=*',
permActions='read')

Chapter 8
Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware

8-9

Note that the above keyName (*) is for all keys. No further grants are needed for a
non-default key, if it is created for a specific application.

4. Configure web.xml, invoke Real Application Security APIs (attach/detach), and
build/deploy the application. See Example 8-2 to see how web.xml is configured.

These are standard Java EE development procedures.

If the attachSessionPrivileged API is invoked in the application code,
SessionCodePermission must be granted to the application code as discussed in
"About the Privilege Elevation API". That is similar to step 3. Here is an example:

grantPermission(codeBaseURL='file:${domain.home}/servers/DefaultServer/tmp/
_WL_user/MyWar/pi47ig/war/WEB-INF/lib/trusted.jar', permClass='
oracle.security.xs.ee.session.SessionCodePermission', permTarget=' MY_NS_DROLE,
permActions='attach')
grantPermission(codeBaseURL='file:${domain.home}/lib/xsee.jar', permClass='
oracle.security.xs.ee.session.SessionCodePermission', permTarget=' MY_NS_DROLE,
permActions='attach')

OPSS scripts require that the WLS administrative server is running. This manual
approach only supports online configuration. Step 4 is always the responsibility of
the application administrator, while Steps 1 through 3 can be automated as
discussed in "About Automatic Configuration".

About Automatic Configuration
With Oracle Fusion Middleware, you can use a configuration utility to configure
common settings for a group of applications. For WebLogic, this is the domain
configuration wizard. In a future WLS release (release 12.1.3), the Steps 1 through 3
(in "Manual Configuration") could be automated by this configuration wizard. This
automatic approach also has the advantage of supporting offline configuration (when
the administrative server is not running).

When the configuration wizard is started (<ORACLE_HOME>/oracle_common/
common/bin/config.sh), the following user interfaces (UIs) will be shown to prompt for
Real Application Security configuration information.

• In the first UI, the application session service is shown as one of the Oracle Fusion
Middleware features for selection. Once selected, its dependency (OPSS, part of
JRF) is automatically selected.

• In the second UI, you are prompted to enter the default session manager's
credential.

There is no UI for granting code permission. This is automatically done by merging a
predefined xml file to the domain's system-jazn-data.xml file. The predefined xml file
contains all the Real Application Security code permission grants that are needed.

If the administrator decides to use a different session manager for an application, then
the administrator must complete manual Step 2 or add a special key name from the
UI. The same key name must be passed to the application's web.xml. In this case, the
map name (store name) is still fixed as oracle.rdbms.ras, and you do not need to
grant code permission because all keys have already been granted internally.

Chapter 8
Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware

8-10

About Application Session APIs
All application session APIs are exposed through class ApplicationSessionService
as static methods. The APIs operate on the current application session, which is set
up based on the current Subject. Inside each API, an identity assertion is performed
internally, to make sure the current application session matches the subject. If a
mismatch is found, an ApplicationSesseionException exception is thrown. The caller
code of the application session API should always be executed inside Subject.doAs,
to be invoked as the subject. See the JDK's Subject.doAs for more information.

This section describes the following topics:

• About Application Session APIs

• About the Privilege Elevation API

• About Namespace APIs

• About the Check Privilege API

About Application Session APIs
This section describes the following topics:

• About Attaching to an Application Session

• Detaching from an Application Session

• Destroying an Application Session

About Attaching to an Application Session
Attach the current user's application session to the given database connection.

For application code to attach to the current user's application session, no code based
permission is needed. The application session works as is, no extra privilege is
elevated through the attach.

Syntax

public static void attachSession(java.sql.Connection conn)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

Example

See Example 8-3 and Example 8-6.

Detaching from an Application Session
Detach the current user's application session from the given database connection.

Chapter 8
About Application Session APIs

8-11

http://docs.oracle.com/javase/7/docs/api/javax/security/auth/Subject.html

It is always a good practice to detach the application session at the application code's
final block. Not doing so may give an attached connection to some code that is not
running under the correct user. It is caller's responsibility to properly detach the
application session once used.

If detach is not called, but attach is called again on the same connection, the server
forces the detach from the previous attached application session, and attaches to the
current application session.

Syntax

public static void detachSession(java.sql.Connection conn)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

Example

Example 8-3 shows sample code that uses the attach and detach API with a database
query. The caller must decide the boundary of the attach and detach calls, based on
the needs of the query.

Example 8-3 Application Session APIs: AttachSession and DetachSession

/**
 * Typical application code calling attach/detach for database query
 */
public void queryHR(Connection conn) {
 String query = " select emp.employee_id, emp.salary from hr.employees emp";
 Statement stmt = null;
 ResultSet rs = null;
 String id, salary;
 try {
 // attach connection to the current application session
 ApplicationSessionService.attachSession(conn);
 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);
 while (rs.next()) {
 id = rs.getString("employee_id");
 salary = rs.getString("salary");
 }
 } catch (ApplicationSessionException e) {
 } catch (SQLException e) {
 } finally {
 // detach the current application session from the connection
 try { ApplicationSessionService.detachSession(conn); } catch (Exception e) {}
 if (stmt != null) try {stmt.close();} catch (SQLException e) {};
 if (rs != null) try { rs.close();} catch (SQLException e{};
 }
 }

Chapter 8
About Application Session APIs

8-12

Destroying an Application Session
Destroys the current application session at the database, and removes it from current
thread's execution context. This should be invoked by the application at logout. It
destroys the current application session originally set up by the filter.

Syntax

public static void destroySession(java.sql.Connection conn)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

Example

Example 8-4 shows sample code that destroys the application session service.

Example 8-4 Application Session APIs: DestroySession

 void doLogout(HttpServletRequest request) {

 DataSource dataSource = null;
 Connection conn = null;

 try {
 InitialContext ic;
 try {
 ic = new InitialContext();

 dataSource = (DataSource)ic.lookup("jdbc/myDBDS");

 if (dataSource != null)
 try {
 conn = dataSource.getConnection();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 } catch (NamingException e) {
 e.printStackTrace();
 }
 // invalidate Http session
 request.getSession().invalidate();
 // destroy XS session at DB
 ApplicationSessionService.destroySession(conn);

 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 } finally {

 if (conn != null)
 try {
 conn.close();
 } catch (SQLException e) {
 }

Chapter 8
About Application Session APIs

8-13

 }

 }

About the Privilege Elevation API
This section describes the following topic: Enabling a Dynamic Role in the Application
Session.

Enabling a Dynamic Role in the Application Session
Attaches the current application session to a given database connection, and enables
the Real Application Security dynamic role in the attached application session. This
allows trusted application code to have higher privileges temporarily in order to
perform some database operations, such as setting up application namespace.

This is for certain trusted application code to elevate the application session privilege.
A Real Application Security dynamic role is enabled during attach. The trusted code is
identified by java code permission.

Syntax

public static void attachSessionPrivileged(java.sql.Connection conn,
 java.lang.String role)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

role The given dynamic role; must be request scope

Example

Each given dynamic role is associated with a code base permission as shown in
Example 8-5 (permission grant in jazn-data.xml)

See Example 8-6.

Usage Notes

The permission is always checked internally in the API, whether the java security
manager is on or off. If the caller has the permission (that implies that the given role
also matches the role defined in the policy file), the given dynamic role is enabled
during attach; otherwise, the API fails with an AccessControlException.

The caller code (caller.jar file) and application session service code (xsee.jar)
should both have the SessioncodePermission permission. This is sufficient when the
caller.jar is invoked directly by the container. When caller.jar is invoked by
another application code, it is up to the caller to decide whether the application code
needs to have this permission. If the caller does not need the application to have this
permission, the caller can invoke attachSessionPrivileged under
AccessController.doPrivileged with a null AccessControllerContext. See the Java
API for details. By doing this, the caller.jar fully trusts the application code.

Chapter 8
About Application Session APIs

8-14

Note that the dynamic role is only enabled on the attached application session, not the
current application session. It is enabled within the window of attach and detach. The
dynamic role must be defined as request scope at the database; otherwise, the
following exception ORA-46055: invalid role specified is thrown.

Example 8-5 Privilege Elevation API

<grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/DefaultServer/tmp/_WL_user/MyWar/pi47ig/war/WEB-
INF/lib/trusted.jar' </url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.xs.ee.session.SessionCodePermission</class>
 <name> MY_NS_DROLE</name>
 <actions>attach </actions>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/lib/xsee.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.xs.ee.session.SessionCodePermission</class>
 <name>MY_NS_DROLE</name>
 <actions>attac </actions>
 </permission>
 </permissions>
 </grant>

About Namespace APIs
This section describes the following topics:

• About Creating a Namespace

• About Deleting a Namespace

• About Setting the Namespace Attribute

• About Deleting a Namespace Attribute

• Getting a Namespace Attribute

About Creating a Namespace
Creates a namespace in the current application session. The namespace given must
be predefined at the database, and the namespace ACL must allow the attached
application session to perform a MODIFY_NAMESPACE operation, unless the
ADMIN_ANY_NAMESPACE privilege is enabled in the application session.

Chapter 8
About Application Session APIs

8-15

Syntax

public static void createNamespace(java.sql.Connection conn,
 java.lang.String name)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name

Example

See Example 8-6.

About Deleting a Namespace
Deletes a namespace from the current application session. The namespace given
must be predefined at the database, and the namespace ACL must allow the attached
application session to perform a MODIFY_NAMESPACE operation, unless the
ADMIN_ANY_NAMESPACE privilege is enabled in the application session.

Syntax

public static void deleteNamespace(java.sql.Connection conn,
 java.lang.String name)
 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name.

Example

See Example 8-6.

About Setting the Namespace Attribute
Sets the attribute value to the namespace in the current application session. The
namespace given must be predefined at the database, and the namespace ACL must
allow the attached application session to perform a MODIFY_ATTRIBUTE operation,
unless the ADMIN_ANY_NAMESPACE privilege is enabled in the application session.

If the attribute does not exist on the namespace, the API creates the attribute with the
given value; otherwise, it simply sets the existing value to the given value.

Chapter 8
About Application Session APIs

8-16

Syntax

public static void setNamespaceAttribute(java.sql.Connection conn,
 java.lang.String name,
 java.lang.String attribute,
 java.lang.String value)
 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name

attribute The given namespace attribute name

value The given namespace attribute value

Example

See Example 8-6.

About Deleting a Namespace Attribute
Deletes the attribute from the namespace in the current application session. The
namespace given must be predefined at the database, and the namespace ACL must
allow the attached application session to perform a MODIFY_ATTRIBUTE operation,
unless the ADMIN_ANY_NAMESPACE privilege is enabled in the application session.

Syntax

public static void deleteNamespaceAttribute(java.sql.Connection conn,
 java.lang.String name,
 java.lang.String attribute)
 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

name The given namespace name

attribute The given namespace attribute name

Example

See Example 8-6.

Chapter 8
About Application Session APIs

8-17

Getting a Namespace Attribute
Gets the attribute from the namespace in the current application session. The given
namespace must be created. No database connection is needed and no privilege is
checked for this operation.

The APIs that change namespace (other than getNamespaceAttribute) have a
database connection as an input parameter. Those APIs update the namespace in the
current application session in the JVM, as well as serialize the change to the database
table. The connection must be attached. It uses the attached application session to
determine whether the server can authorize the namespace change.

To allow only certain trusted application code to set up namespace. The connection
can be attached with a dynamic role, which has elevated privileges
(MODIFY_NAMESPACE, MODIFY_ATTRIBUTE) on the namespace. This is achieved using the
attachSessionPrivileged API, and only granting the namespace privileges to the
dynamic role.

Syntax

public static java.lang.String getNamespaceAttribute(java.lang.String name,
 java.lang.String attribute)
 throws NamespaceNotFoundException,
 ApplicationSessionException

Parameter

Parameter Description

name The given namespace name

attribute The given namespace attribute name

Example

Example 8-6 shows a sample servlet filter that sets up namespace using namespace
APIs and uses the application session privilege elevation API.

Important Points to Know About Using Application Namespace

The following usage information summarizes important points about using application
namespace.

• The Real Application Security filter caches all the application namespace to the
current application session.

– For first time access, a new application session must be created in the
database. No application namespace has been set up yet at this time.

– For the user's subsequent access, the filter always brings all the namespaces
created for the application session, and caches them in the current application
session in JVM.

• Application code always accesses namespace from the current application
session. Each update operation is a round trip to the server to change the values
in the table and current application session (JVM). That is why each update API
has a database connection parameter. However, the read attribute is a local

Chapter 8
About Application Session APIs

8-18

operation to read from the current application session in JVM without accessing
the database.

• Whenever a namespace change is successfully done, the change is propagated to
the already attached application sessions, as well as newly attached application
sessions because all these attached application sessions refer to the single source
- the current application session.

• The namespace in the current application session is consistent within an http
request scope for the web application. Even the namespace can be changed at
any time by other applications. The change is only picked up once at the beginning
of the current http request by the Real Application Security filter. All attaches that
happen within the same http request refer to the same namespace in the current
application session.

• Application code has complete control for changing the namespace value. It can
read the current application session's namespace at any time and decide whether
to update the namespace by calling the namespace APIs.

Example 8-6 Namespace APIs

/**
 * Trusted application code (servlet filter) sets up namespace
 * Using privilege elevation and namespace APIs
 */
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws
IOException, ServletException {
 Connection conn = null;
 try {
 conn = myDatasource.getConnection();
 // Attach an application session with a dynamic role.
 ApplicationSessionService.attachSessionPrivileged(conn, "myNSRole");
 try {
 // Get the current value.
 String currentValue = ApplicationSessionService.getNamespaceAttribute("mySecuredNS",
"myAttribute");
 // If the current value is not desired, set it.
 if ("myValue".compareToIgnoreCase(currentValue) != 0)
 ApplicationSessionService.setNamespaceAttribute(conn, "mySecuredNS", "myAttribute",
"myValue");
 } catch (NamespaceNotFoundException e) {
 // Namespace is not found, create it.
 ApplicationSessionService.createNamespace(conn, "mySecuredNS");
 // Set the attribute.
 ApplicationSessionService.setNamespaceAttribute(conn, "mySecuredNS", "myAttribute",
"myValue");
 }
 } catch (SQLException e) {
 } catch (ApplicationSessionException e) {
 } finally {
 // Detach an application session.
 try { ApplicationSessionService.detachSession(conn); } catch (Exception e) {}
 if (conn != null) try { conn.close();} catch (Exception e) {}
 }
 // Execution of application code.
 chain.doFilter(request, response);

About the Check Privilege API
This section describes the following topic: Checking a Privilege on the ACLs.

Chapter 8
About Application Session APIs

8-19

Checking a Privilege on the ACLs
Checks the privilege on the ACLs using the attached application session of the given
connection and includes these usage notes:

• An attached connection must be given. The privilege check is based on the
attached application session. Note that an attached application session can have
extra privileges compared to the current application session through the
attachSessionPrivileged call.

• The API takes the input parameter of ACL IDs, which can be queried from the
table using the ORA_GET_ACLID operator. The operator returns a set of ACL IDs
associated with the current row.

• This API takes the input parameter of privilege name. This input parameter can be
DML privileges, such as SELECT or UPDATE, or it can be any user defined privilege.

Syntax

public static boolean checkPrivilege(java.sql.Connection conn,
 byte[] acls,
 java.lang.String privilege)
 throws ApplicationSessionException

Parameter

Parameter Description

conn The JDBC connection for database server roundtrip

acls The given ACL IDs in row format

privilege The given privilege name

Example

Example 8-7 shows getting the ACL associated with the row and checking the UPDATE
privilege on the ACL.

Example 8-7 CheckPrivilege API

 public Collection<Employee> queryHR(Connection conn) {

 Statement stmt = null;
 ResultSet rs = null;

 Collection<Employee> result = new ArrayList<Employee>();

 try {
 // attach session
 ApplicationSessionService.attachSession(conn);

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {
 Employee emp = new Employee();

Chapter 8
About Application Session APIs

8-20

 emp.setId(rs.getString("EMPLOYEE_ID"));

 AuthorizationIndicator ai =
 ((OracleResultSet)rs).getAuthorizationIndicator("salary");

 if (ai == AuthorizationIndicator.NONE) {
 emp.setSalary(rs.getString("salary"));
 } else {
 emp.setSalary("******") ;
 }

 // get ACL associated with the row
 emp.setAcl(rs.getBytes("acl_id"));
 // check "update" privilege
 boolean canUpdate = ApplicationSessionService.checkPrivilege(conn, emp.getAcl(), "UPDATE");

 emp.setUpdate(canUpdate);
 result.add(emp);

 emp.setFname(rs.getString("first_name"));
 emp.setLname(rs.getString("last_name"));
 emp.setEmail(rs.getString("email"));
 emp.setPhone(rs.getString("phone_number"));
 emp.setManagerId(rs.getString("manager_id"));
 emp.setDepId(rs.getString("department_id"));

 }
 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 // process me
 } catch (SQLException e) {
 // process me
 e.printStackTrace();
 } finally {
 if (stmt != null) try {stmt.close();} catch (SQLException e) {};
 if (rs != null) try { rs.close();} catch (SQLException e) {};
 try {ApplicationSessionService.detachSession(conn);} catch (ApplicationSessionException e)
{};

 }

 return result;
 }

Human Resources Demo Use Case: Implementation in Java
This section describes how an application session service supports user and roles
managed externally by Oracle Fusion Middleware. This Java example is based on the
Security Human Resources (HR) scenario. It uses the EMPLOYEES table in the sample
HR schema.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-21

See Also:

For information about user and group to application roles mapping, see
About the HR Demo Use Case - User Roles.

This example includes the following files and employee records that the three types of
users can access:

• Setting Up the HR Demo Application for External Principals (setup.sql)

• About the Application Session Filter Configuration File (web.xml)

• About the Sample Servlet Application (MyHR.java)

• About the Filter to Set Up the Application Namespace (MyFilter.java)

• About the HR Demo (1) - Logged in as Employee LPOPP

• About the HR Demo (2) - Logged in as HRMGR

• About the HR Demo (3) - Logged in as a Team Manager

Setting Up the HR Demo Application for External Principals (setup.sql)
Example 8-8 shows a set up script (setup.sql) for setting up the HR Demo application
for external principals.

This setup script performs the following operations:

• Creates a dynamic role, HROBJ, for object privileges for the external user

• Creates a security class, HRPRIVS, with privilege view_sensitive_info, and
aggregate privilege update_info that implies data privileges, update, delete,
insert, which come from pre-defined security class DML.

• Creates an EMP ACL, EMP_ACL, to grant EMP, HRMGR and HRREP privileges to access
employee record in the restricted departments. Note that each external principal,
(application role: HRREP, HRMGR, and EMP) must match the OPSS policy store GUID
values.

• Creates an self ACL, SELF_ACL, to grant EMP privileges for an employee to see and
update his or her own record.

• Creates a Manager ACL, MGR_ACL, to allow a manager to see his or her
employee's salary information.

• Creates a data security policy, EMPLOYEE_DS, for the EMPLOYEES table. The policy
defines an instance set to control access to the employees in department 60 and
100 to EMP_ACL. It also defines an attribute constraint to control access to the
sensitive SALARY column.

• Defines two additional instance sets to SELF_ACL and MGR_ACL that are appended
to the data security policy, EMPLOYEE_DS.

• Grants to the dispatcher some additional privileges.

Example 8-8 Set Up the HR Demo Application for External Principals

Rem Copyright (c) 2009, 2014, Oracle and/or its affiliates.
Rem All rights reserved.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-22

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100

-- A PL/SQL function to determine manager-report relationship
conn hr/hr;

create or replace package hrutil as
 function ismyreport(id IN PLS_INTEGER)
 return PLS_INTEGER ;
end hrutil;
/

create or replace package body hrutil as
 function ismyreport(id IN PLS_INTEGER)
 return PLS_INTEGER is
 mycount PLS_INTEGER ;
 myid PLS_INTEGER ;
 begin
 select employee_id into myid from hr.employees
 where UPPER(email) = XS_SYS_CONTEXT('PROFILE_NS','EMAIL');

 select count(employee_id) into mycount from hr.employees
 where employee_id = id start with manager_id = myid
 connect by prior employee_id = manager_id ;
 return mycount ;
 end ismyreport ;
end hrutil ;
/

-- Create a dynamic role for object privileges for external users.
connect sys/password as sysdba
show con_name;

-- Create a dynamic role for HR object privileges.
exec xs_principal.delete_principal('HROBJ',XS_ADMIN_UTIL.CASCADE_OPTION);
exec xs_principal.create_dynamic_role('HROBJ');

-- Create a db role to have HR object privileges.
drop role hr_db_obj;
create role hr_db_obj;
-- Grant object privilege to the db role.
grant select, insert, update, delete on hr.employees to hr_db_obj;

-- Grant db role to dynamic role.
grant hr_db_obj to HROBJ;

-- Create a security class with privilege view_sensitive_info, and
-- aggregate privilege update_info that implies data privileges,
-- update, delete, insert, which come from pre-defined security class
-- DML.
DECLARE
 priv_list XS$PRIVILEGE_LIST;
BEGIN
 priv_list :=XS$PRIVILEGE_LIST(

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-23

 XS$PRIVILEGE(name=>'VIEW_SENSITIVE_INFO'),
 XS$PRIVILEGE(name=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST
 ('"UPDATE"', '"DELETE"', '"INSERT"')));

 xs_security_class.create_security_class(
 name=>'HRPRIVS',
 parent_list=>XS$NAME_LIST('DML'),
 priv_list=>priv_list);
END;
/

-- External Principal (app role) Used for data security:
-- Such a principal must match the OPSS policy store.
-- roleName="HRREP" guid="37ED0D108C2F11E2BF802D569259982"
-- roleName="HRMGR" guid="4077A2B08C2F11E2BF802D569259982"
-- roleName="EMP" guid="F917C3608CF011E2BF802D569259982"

-- Create an EMP Acl to grant EMP, HRMGR and HRREP privileges to access an employee record in the
restricted departments.
DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'"37ED0D108C2F11E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>true,
 principal_name=>'"4077A2B08C2F11E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),
 granted=>true,
 principal_name=>'"F917C3608CF011E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL));

 xs_acl.create_acl(name=> 'EMP_ACL',
 ace_list=> ace_list,
 sec_class=>'HRPRIVS',
 description=> 'Employee access to his/her data');
END;
/

-- Create a self Acl to grant EMP privileges to for an employee to see and update his own record.
-- Grant UPDATE, VIEW_SENSITIVE_INFO privileges to the EMP role.
DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=> XS$NAME_LIST('"UPDATE"', 'VIEW_SENSITIVE_INFO'),
 principal_name=>'"F917C3608CF011E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL));

 xs_acl.create_acl(name=> 'SELF_ACL',
 ace_list=> ace_list,
 sec_class=>'HRPRIVS',
 description=> 'Employee access to his/her data');
END;
/

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-24

-- Create Manager ACL, to allow a manager to see his employee's salary.
-- Grant VIEW_SENSITIVE_INFO privileges to EMP role on the Manager's employees.
--
DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=> XS$NAME_LIST('VIEW_SENSITIVE_INFO'),
 principal_name=>'"F917C3608CF011E2BF802D569259982"',
principal_type=>XS_ACL.PTYPE_EXTERNAL));

 xs_acl.create_acl(name=> 'MGR_ACL',
 ace_list=> ace_list,
 sec_class=>'HRPRIVS',
 description=> 'Manager can see his reports salaray');
END;
/

-- Create data security policy for the EMPLOYEE table. The policy defines
-- an instant set to control the access to the employees in department
-- 60 and 100. It also defines an attribute constraint to control
-- the access to sensitive column SALARY.
DECLARE
 inst_sets XS$REALM_CONSTRAINT_LIST;
 attr_secs XS$COLUMN_CONSTRAINT_LIST;
BEGIN
 inst_sets :=
 XS$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('EMP_ACL')));

 attr_secs :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('SALARY'),
 privilege=> 'VIEW_SENSITIVE_INFO'));

 xs_data_security.create_policy(
 name=>'EMPLOYEES_DS',
 realm_constraint_list=>inst_sets,
 column_constraint_list=>attr_secs);
END;
/

-- Add more instance sets to the above data security.
declare
 inst1 xs$REALM_CONSTRAINT_TYPE;
 inst2 xs$REALM_CONSTRAINT_TYPE;
begin

 inst1 := xs$REALM_CONSTRAINT_TYPE(realm=> 'UPPER(email) = XS_SYS_CONTEXT(''PROFILE_NS'',''EMAIL'')',
 acl_list=> XS$NAME_LIST('SELF_ACL'));

 xs_data_security.append_realm_constraints('EMPLOYEES_DS', inst1);

 inst2 := xs$REALM_CONSTRAINT_TYPE(realm=> 'hr.hrutil.ismyreport(employee_id) = 1',
 acl_list=> XS$NAME_LIST('MGR_ACL'));

 xs_data_security.append_realm_constraints('EMPLOYEES_DS', inst2);
end;
/

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-25

-- Apply the data security policy on the table.

begin
 XS_DATA_SECURITY.apply_object_policy(schema=>'HR', object=>'EMPLOYEES',
 policy=>'EMPLOYEES_DS');
end;
/

-- Grant more privileges for the dispatcher.
exec XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMIN_ANY_NAMESPACE','ts',XS_ADMIN_UTIL.PTYPE_XS);
grant select on sys.dba_xs_session_roles to ts_role;

EXIT;

About the Application Session Filter Configuration File (web.xml)
Example 8-9 shows a complete application session filter sample configuration file
(web.xml) that includes the filter, its parameters, and the listener. It references a filter
for setting up the namespace (MyFilter.java) shown in Example 8-11, and the
sample servlet applications named MyHR.java shown in Example 8-10, in addition to:
MySession.java, MyUpdate.java, and LogoutServlet.java, which are not shown.

MySession queries the V$XS_SESSION_ROLES view to show the roles in the application
session, queries the users in XS$SESSION namespace to show the user in the
application session, and queries the V$XS_SESSION_NS_ATTRIBUTES view to show the
namespace in the application session, and then attaches to an application session.

MyUpdate performs an update on the HR.EMPLOYEES table to update the phone number
for an employee.

LogoutServlet performs a logout operation, and then destroys the application session
at the database.

In the ApplicationSessionFilter filter configuration, the filter section references the
class ApllicationSessionFilter, describes a parameter application.datasource
with a parameter value jdbc/myDBDS, and describes a parameter dynamic roles with a
value of HROBJ that was created in the set up script in Example 8-8.

Example 8-9 A Complete Application Session Filter Sample Configuration

<?xml version = '1.0' encoding = 'UTF-8'?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-
app_2_5.xsd"
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee">
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>enable.anonymous</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>remove.anonymous.role</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>application.name</param-name>

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-26

 <param-value>MyHRApp</param-value>
 </init-param>
 <!-- Following needed for Menu Security -->
 <!--init-param>
 <param-name>oracle.security.jps.jaas.mode</param-name>
 <param-value>subjectOnly</param-value>
 </init-param-->
 </filter>
 <filter>
 <filter-name>ApplicationSessionFilter</filter-name>
 <filter-class>oracle.security.xs.ee.session.ApplicationSessionFilter</filter-class>

 <init-param>
 <param-name>application.datasource</param-name>
 <param-value>jdbc/myDBDS</param-value>
 </init-param>
 <init-param>
 <param-name>dynamic.roles</param-name>
 <param-value>HROBJ</param-value>
 </init-param>
 <!--
 <init-param>
 <param-name>dispatcher.pool.max</param-name>
 <param-value>90</param-value>
 </init-param>
 -->
 <!-- init-param>
 <param-name>application.id</param-name>
 <param-value>MyHRApp</param-value>
 </init-param>
 <init-param>
 <param-name>session.provider</param-name>
 <param-value>XS</param-value>
 </init-param>
 <init-param>
 <param-name>db.url</param-name>
 <param-value>jdbc:oracle:thin:@myhost:1521:orcl</param-value>
 </init-param>

 <init-param>
 <param-name>dispatcher.id</param-name>
 <param-value>ts</param-value>
 </init-param>

 <init-param>
 <param-name>dispatcher.pwd.map</param-name>
 <param-value>XS_MAP</param-value>
 </init-param>
 <init-param>
 <param-name>dispatcher.pwd.key</param-name>
 <param-value>XS_KEY</param-value>
 </init-param>
 <init-param>
 <param-name>dispatcher.pool.min</param-name>
 <param-value>3</param-value>
 </init-param>
 <init-param>
 <param-name>dispatcher.pool.max</param-name>
 <param-value>10</param-value>
 </init-param -->

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-27

 <!--init-param>
 <param-name>namespaces</param-name>
 <param-value>sec_ns</param-value>
 </init-param-->
 </filter>
 <filter>
 <filter-name>MyFilter</filter-name>
 <filter-class>trusted.MyFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>ApplicationSessionFilter</filter-name>
 <url-pattern>/myhr</url-pattern>
 <url-pattern>/mysession</url-pattern>
 <url-pattern>/myupdate</url-pattern>
 <url-pattern>/logout</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>MyFilter</filter-name>
 <url-pattern>/myhr</url-pattern>
 <url-pattern>/mysession</url-pattern>
 <url-pattern>/myupdate</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>
 <listener>
 <listener-class>oracle.security.xs.ee.session.ApplicationSessionListener</listener-class>
 </listener>
 <servlet>
 <servlet-name>MySession</servlet-name>
 <servlet-class>app.MySession</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>LogoutServlet</servlet-name>
 <servlet-class>app.MyLogout</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MyHR</servlet-name>
 <servlet-class>app.MyHR</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>MyUpdate</servlet-name>
 <servlet-class>app.MyUpdate</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>MySession</servlet-name>
 <url-pattern>/mysession</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>LogoutServlet</servlet-name>
 <url-pattern>/logout</url-pattern>

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-28

 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MyHR</servlet-name>
 <url-pattern>/myhr</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>MyUpdate</servlet-name>
 <url-pattern>/myupdate</url-pattern>
 </servlet-mapping>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>my servlet</web-resource-name>
 <url-pattern>/myhr</url-pattern>
 <url-pattern>/mysession</url-pattern>
 <url-pattern>/myupdate</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>valid-users</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>CLIENT-CERT,FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <role-name>valid-users</role-name>
 </security-role>
</web-app>

About the Sample Servlet Application (MyHR.java)
Example 8-10 shows the sample servlet application named MyHR.java, which is
referenced in the application session filter sample configuration (web.xml file) shown in
Example 8-9.

The MyHR application performs a query on the EMPLOYEES table and returns the
results. If you have authorization, depending on your login credentials, you can
perform certain tasks as described in:

• About the HR Demo (1) - Logged in as Employee LPOPP

As an employee, you can see your own salary information, but no one elses, and
you can update only your own contact information.

• About the HR Demo (2) - Logged in as HRMGR

If you are logged in as a HR Manager, you can see the salary records of all
employees and you can update their contact information.

• About the HR Demo (3) - Logged in as a Team Manager

If you are logged in as a Team Manager, you can see only your teams's
employees salary information, but you cannot update their contact information,
only your own contact information.

From a check of the privilege on the ACLs (checkPrivilege), if you have UPDATE
privilege, then you are authorized to perform an update of that employee's record and
the EMPLOYEE_ID will show a link that allows you access to that employee's record.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-29

Example 8-10 Sample Servlet Application MyHR.java

/* Copyright (c) 2009, 2014, Oracle and/or its affiliates.
All rights reserved.*/

package app;

import java.io.IOException;
import java.io.PrintWriter;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.ArrayList;
import java.util.Collection;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.servlet.ServletConfig;
import javax.servlet.http.HttpServlet;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import javax.sql.DataSource;

import oracle.jdbc.OracleResultSet;
import oracle.jdbc.OracleResultSet.AuthorizationIndicator;
import oracle.security.xs.ee.session.ApplicationSessionException;
import oracle.security.xs.ee.session.ApplicationSessionService;

public class MyHR extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html; charset=UTF-8";

 String query = " select emp.EMPLOYEE_ID, emp.first_name, emp.last_name, " +
 " emp.email, emp.phone_number, salary, emp.manager_id, " +
 " emp.department_id,ora_get_aclids(emp) as acl_id" +
 " from hr.employees emp";

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 public void queryHR(PrintWriter out) throws ApplicationSessionException {

 DataSource dataSource = null;
 Connection conn = null;

 try {
 InitialContext ic;
 try {
 ic = new InitialContext();

 dataSource = (DataSource)ic.lookup("jdbc/myDBDS");

 if (dataSource != null)
 try {
 conn = dataSource.getConnection();

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-30

 } catch (SQLException e) {
 e.printStackTrace();
 }
 } catch (NamingException e) {
 e.printStackTrace();
 }

 try {
 queryHR(conn, out);
 } catch (Exception e) {
 e.printStackTrace();
 }

 } finally {

 if (conn != null)
 try {
 conn.close();
 } catch (SQLException e) {
 }
 }

 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException,
 IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter pw = response.getWriter();

 pw.println(HEADER);

 pw.println("<h1>RAS Session Service Demo</h1>");
 pw.println("");
 pw.println("You are logged in as " + request.getRemoteUser() + "");

 try {
 queryHR(pw);
 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 }

 pw.println(FOOTER);
 pw.close();
 }

 public Collection<Employee> queryHR(Connection conn) {

 Statement stmt = null;
 ResultSet rs = null;

 Collection<Employee> result = new ArrayList<Employee>();

 try {
 // attach session
 ApplicationSessionService.attachSession(conn);

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-31

 while (rs.next()) {
 Employee emp = new Employee();

 emp.setId(rs.getString("EMPLOYEE_ID"));

 AuthorizationIndicator ai =
 ((OracleResultSet)rs).getAuthorizationIndicator("salary");

 if (ai == AuthorizationIndicator.NONE) {
 emp.setSalary(rs.getString("salary"));
 } else {
 emp.setSalary("******") ;
 }

 // get ACL associated with the row
 emp.setAcl(rs.getBytes("acl_id"));
 // check "update" privilege
 boolean canUpdate = ApplicationSessionService.checkPrivilege(conn, emp.getAcl(), "UPDATE");

 emp.setUpdate(canUpdate);
 result.add(emp);

 emp.setFname(rs.getString("first_name"));
 emp.setLname(rs.getString("last_name"));
 emp.setEmail(rs.getString("email"));
 emp.setPhone(rs.getString("phone_number"));
 emp.setManagerId(rs.getString("manager_id"));
 emp.setDepId(rs.getString("department_id"));

 }
 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 // process me
 } catch (SQLException e) {
 // process me
 e.printStackTrace();
 } finally {
 if (stmt != null) try {stmt.close();} catch (SQLException e) {};
 if (rs != null) try { rs.close();} catch (SQLException e) {};
 try {ApplicationSessionService.detachSession(conn);} catch (ApplicationSessionException e)
{};

 }

 return result;
 }

 public void queryHR(Connection conn, PrintWriter out) {

 Collection<Employee> list = queryHR(conn);

 PrintWriter pw = out;

 pw.println("
Displaying employee record(s) that you can access.
");
 pw.println("");
 pw.println("<i>NOTE: Salary is only shown if you are authorized to view,
 and ID is shown as a link if you are authorized to perform an update.</i>
");

 out.println("<table border=\"1\">");

 String tmp;

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-32

 if (list.size() > 0) {
 out.println("<tr>");
 out.println("<th>ID</th>");
 out.println("<th>First Name</th>");
 out.println("<th>Last Name</th>");
 out.println("<th>Email</th>");
 out.println("<th>Phone</th>");
 out.println("<th>Salary</th>");

 out.println("<th>Department ID</th>");
 out.println("<th>Manager ID</th>");
 out.println("</tr>");
 }

 for (Employee e: list) {

 if (e.canUpdate()) {
 tmp = "" + e.getId() + "";
 } else {
 tmp = e.getId();
 }

 out.println("<tr><td>" + tmp + "</td>");
 out.println("<td>" + e.getFname() + "</td>");
 out.println("<td>" + e.getLname() + "</td>");
 out.println("<td>" + e.getEmail() + "</td>");
 out.println("<td>" + e.getPhone() + "</td>");
 out.println("<td>" + e.getSalary() + "</td>");
 out.println("<td>" + e.getDepId() + "</td>");
 out.println("<td>" + e.getManagerId() + "</td></tr>");

 }

 out.println("</TABLE>");

 };

 class Employee {

 String id;
 String salary;
 boolean update;
 String fname;
 String lname;
 String email;
 String phone;
 String managerId;
 String depId;
 byte[] acl;

 public void setId(String id) {
 this.id = id;
 }

 public String getId() {
 return id;
 }

 public void setSalary(String salary) {
 this.salary = salary;

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-33

 }

 public String getSalary() {
 return salary;
 }

 public void setUpdate(boolean canUpdate) {
 this.update = canUpdate;
 }

 public boolean canUpdate() {
 return update;
 }

 public void setFname(String fname) {
 this.fname = fname;
 }

 public String getFname() {
 return fname;
 }

 public void setLname(String lname) {
 this.lname = lname;
 }

 public String getLname() {
 return lname;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getEmail() {
 return email;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }

 public String getPhone() {
 return phone;
 }

 public void setManagerId(String managerId) {
 this.managerId = managerId;
 }

 public String getManagerId() {
 return managerId;
 }

 public void setDepId(String depId) {
 this.depId = depId;
 }

 public String getDepId() {
 return depId;
 }

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-34

 public void setAcl(byte[] acl) {
 this.acl = acl;
 }

 public byte[] getAcl() {
 return acl;
 }
 }

 private static String HEADER = "<html xmlns=\"http://www.w3.org/1999/xhtml\"><head>"
 + "<meta content=\"text/html; charset=UTF-8\" http-equiv=\"content-type\"/>"
 + "<title>Oracle</title>"
 + "<link href=\"css/general.css\" type=\"text/css\" rel=\"stylesheet\"/>"
 + "<link href=\"css/window.css\" type=\"text/css\" rel=\"stylesheet\"/>"
 + "<link href=\"css/login.css\" type=\"text/css\" rel=\"stylesheet\"/>"
 + "<script type=\"text/javascript\">"
 + " if (top != self) top.location.href = location.href;"
 + "</script>"
 + "<style type=\"text/css\">"
 + "html { background-color: #001C34;}"
 + "</style>"
 + "</head>"
 + "<body onload=\"document.loginData.j_username.focus();\">"
 + " <div id=\"top\">"
 + " <div id=\"login-header\">"
 + " <div id=\"login-logo\">"
 + " "
 + "</div>"
 + " </div>"
 + " <div id=\"content\">"
 + "<div id=\"app_data\"><div id=\"title\"></div>";

 private static String FOOTER = "Logout"
 + "</div></div><div id=\"info\"></div></div></body></html>";
}

About the Filter to Set Up the Application Namespace (MyFilter.java)
Example 8-11 shows a filter to set up the application namespace. This filter is named
MyFilter.java, which is referenced in the application session filter sample
configuration (web.xml file) shown in Example 8-9.

This filter should be deployed as a separate jar, and SessionCodePermission should
be granted to the jar file.

This filter first queries the V$XS_SESSION_ROLES view to show the roles in the Real
Security Application session. Next, this filter demonstrates how trusted application
code (a filter) firsts checks to see if a namespace exists (getNamespaceAttribute);
then if not, it can set up a security critical namespace using session privilege elevation
(attachSessionPrivileged) and namespace APIs (createNamespace, and
setNamespaceAttribute) to create the namespace and set some namespace
attributes.

Example 8-11 Filter to Set Up Application Namespace

/* Copyright (c) 2009, 2014, Oracle and/or its affiliates.
All rights reserved.*/

package trusted;

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-35

import java.io.IOException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.sql.DataSource;
import oracle.security.xs.ee.session.ApplicationSessionException;
import oracle.security.xs.ee.session.ApplicationSessionService;
import oracle.security.xs.ee.session.NamespaceNotFoundException;

/**
 * Demonstrate how trusted application code (a filter) can set up
 * security critical namespace using session privilege elevation and
 * namespace APIs.
 *
 * The filter should be deployed as a separate jar, and SessionCodePermission
 * should be granted to the jar.
 */

public class MyFilter implements Filter {
 private FilterConfig _filterConfig = null;
 DataSource myDatasource = null;

 public void init(FilterConfig filterConfig) throws ServletException {
 _filterConfig = filterConfig;

 }

 public void destroy() {
 _filterConfig = null;
 }

 public void querySessionRoles(Connection conn) throws SQLException {

 String query =
 "select role_name from v$xs_session_roles order by role_name";
 String roles = null;

 try {

 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(query);

 System.out.println("<p> roles in RAS session (from myfilter):</p>");

 System.out.println("<TABLE>");

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-36

 while (rs.next()) {

 roles = rs.getString(1);
 System.out.println("<tr><td>" + roles + "</td></tr>");
 }
 System.out.println("</TABLE>");
 } finally {

 }

 return;
 }

 private boolean namespaceExists(String ns, String attribute, String value) throws
ApplicationSessionException {

 try {
 return value.equalsIgnoreCase(ApplicationSessionService.getNamespaceAttribute(ns,
attribute));
 } catch (NamespaceNotFoundException e) {
 return false;
 }
 }

 private Connection getConnection() {

 DataSource dataSource = null;
 InitialContext ic;
 try {
 ic = new InitialContext(); //TODO cache context

 dataSource = (DataSource)ic.lookup("jdbc/myDBDS");

 if (dataSource != null)
 try {
 return dataSource.getConnection();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 } catch (NamingException e) {
 e.printStackTrace();
 }
 return null;
 }

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) {

 Connection conn = null;

 try {

 String email = ((HttpServletRequest)request).getRemoteUser();
 if (email != null && !namespaceExists("PROFILE_NS", "EMAIL", email)) {

 conn = getConnection();

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-37

 //AccessController.doPrivileged(new AttachAction(conn), null);
 ApplicationSessionService.attachSessionPrivileged(conn, "SESSION_NS_DROLE");

 ApplicationSessionService.createNamespace(conn, "PROFILE_NS");
 ApplicationSessionService.setNamespaceAttribute(conn, "PROFILE_NS", "EMAIL", email);

 ApplicationSessionService.detachSession(conn);
 }

 } catch (ApplicationSessionException e) {
 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 } finally {

 if (conn != null)
 try {
 conn.close();
 } catch (SQLException e) {
 }
 }

 try {
 chain.doFilter(request, response);
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ServletException e) {
 e.printStackTrace();
 }
 }
}

About the HR Demo Use Case - User Roles
In the HR Demo Use Case, the Identity Management store contains the user name,
user name's password, and group name, while the OPSS security store contains the
application roles and the user and group to application roles mapping. Example 8-12
shows a code snippet for the user and group to application roles mapping for one user
LPOPP.

Example 8-12 User and Group to Application Roles Mapping

<app-role>
<name>EMP</name>
<display-name>Employee for dept #60 and dept #100</display-name>
<description>HR manager for dept #60 and representative for dept #100</description>
<guid>F917C3608CF011E2BF802D569259982</guid>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>
<members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>LPOPP</name>
 </member>
</members>
</app-role>

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-38

About the HR Demo (1) - Logged in as Employee LPOPP
Table 8-1 displays employee records that you can access logged in as an employee,
LPOPP. You can see everyone's record except their salary information, you can see
your own salary information, and you can update your own contact information.

This access is set by:

• Realm and grant (1): DEPARTMENT_ID in (60, 100) and SELECT to EMP

• Realm and grant (2): UPPER(email) = XS_SYS_CONTEXT("PROFILE_NS","EMAIL")
and UPDATE, VIEW_SENSITIVE_INFO to EMP

• Column Constraints: SALARY requires VIEW_SENSITIVE_INFO privilege

Salary is only shown if you are authorized to view, and ID is shown as a link (Italic
format in the table) if you are authorized to update.

Table 8-1 Session Service HR Demo(1) Logged in as Employee LPOPP

ID First
Name

Last Name Email Phone Salary Department ID Manager ID

103 Alexander Hunold AHUNOLD 510.222.3388 ****** 60 102

104 Bruce Ernst BERNST 590.423.4568 ****** 60 103

105 David Austin DAUSTIN 590.423.4569 ****** 60 103

106 Valli Pataballa VPATABAL 590.423.4560 ****** 60 103

107 Diana Lorentz DLORENTZ 590.423.4567 ****** 60 103

108 Nancy Greenberg NGREENBE 515.124.4569 ****** 100 101

109 Daniel Faviet DFAVIET 515.124.4169 ****** 100 108

110 John Chen JCHEN 515.124.4269 ****** 100 108

111 Ismael Sciarra ISCIARRA 515.124.4369 ****** 100 108

112 Jose
Manuel

Urman JMURMAN 515.124.4469 ****** 100 108

113 Luis Popp LPOOP 133.444.5555 6900 100 108

About the HR Demo (2) - Logged in as HRMGR
Table 8-2 displays employee records that you can access logged in as an HR
Manager, HRMGR. You can see every employee's salary information, and you can
update every employee's contact information.

This access is set by the realm and grant: DEPARTMENT_ID in (60, 100), SELECT,
UPDATE, and VIEW_SENSITIVE_INFO to HRMGR.

Salary is only shown if you are authorized to view, and ID is shown as a link (Italic
format in the table) if you are authorized to update.

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-39

Table 8-2 Session Service HR Demo(2) Logged in as HR Manager HRMGR

ID First Name Last Name Email Phone Salary Department ID Manager ID

103 Alexander Hunold AHUNOLD 510.222.3388 9000 60 102

104 Bruce Ernst BERNST 590.423.4568 6000 60 103

105 David Austin DAUSTIN 590.423.4569 4800 60 103

106 Valli Pataballa VPATABAL 590.423.4560 4800 60 103

107 Diana Lorentz DLORENTZ 590.423.4567 4200 60 103

108 Nancy Greenberg NGREENBE 515.124.4569 12008 100 101

109 Daniel Faviet DFAVIET 515.124.4169 9000 100 108

110 John Chen JCHEN 515.124.4269 8200 100 108

111 Ismael Sciarra ISCIARRA 515.124.4369 7700 100 108

112 Jose
Manuel

Urman JMURMAN 515.124.4469 7800 100 108

113 Luis Popp LPOOP 133.444.5555 6900 100 108

About the HR Demo (3) - Logged in as a Team Manager
Table 8-3 displays employee records that you can access logged in as a Team
Manager, AHUNOLD. You can see your team member's salary information; however, you
cannot update their contact information, only your own contact information.

This access is set by the realm and grant: is my member(employee_id) =1 and
VIEW_SENSITIVE_INFO to EMP.

Salary is only shown if you are authorized to view, and ID is shown as a link (Italic
format in the table) if you are authorized to update.

Table 8-3 Session Service HR Demo(3) Logged in as Team Manager AHUNOLD

ID First Name Last Name Email Phone Salary Department ID Manager ID

103 Alexander Hunold AHUNOLD 510.222.3388 9000 60 102

104 Bruce Ernst BERNST 590.423.4568 6000 60 103

105 David Austin DAUSTIN 590.423.4569 4800 60 103

106 Valli Pataballa VPATABAL 590.423.4560 4800 60 103

107 Diana Lorentz DLORENTZ 590.423.4567 4200 60 103

108 Nancy Greenberg NGREENBE 515.124.4569 ****** 100 101

109 Daniel Faviet DFAVIET 515.124.4169 ****** 100 108

110 John Chen JCHEN 515.124.4269 ****** 100 108

111 Ismael Sciarra ISCIARRA 515.124.4369 ****** 100 108

112 Jose
Manuel

Urman JMURMAN 515.124.4469 ****** 100 108

113 Luis Popp LPOOP 133.444.5555 ****** 100 108

Chapter 8
Human Resources Demo Use Case: Implementation in Java

8-40

9
Oracle Database Real Application Security
Data Dictionary Views

This chapter describes the data dictionary views provided with Oracle Database Real
Application Security.

Table 9-1 summarizes these views. For additional data dictionary views related to
Oracle Real Application Security, see Oracle Database Reference.

Table 9-1 Oracle Database Real Application Security Data Dictionary Views

Data Dictionary View Summary Description

DBA_XS_OBJECTS Displays all Real Application Security
objects

DBA_XS_PRINCIPALS Displays all application users and
application roles

DBA_XS_EXTERNAL_PRINCIPALS Displays all external application users
and application roles

DBA_XS_USERS Displays all application users

USER_XS_USERS Displays the application users own
account information

USER_XS_PASSWORD_LIMITS Displays password limits for the currently
logged on application user

DBA_XS_ROLES Displays all application roles

DBA_XS_DYNAMIC_ROLES Displays all dynamic application roles

DBA_XS_PROXY_ROLES Displays all proxy application roles

DBA_XS_ROLE_GRANTS Displays all Real Application Security
application role grants

DBA_XS_PRIVILEGES Lists all Real Application Security
application privileges defined in the
database.

USER_XS_PRIVILEGES Lists application privileges contained in
security classes owned by the current
user

DBA_XS_IMPLIED_PRIVILEGES Lists all the Real Application Security
implied application privileges defined in
the database

USER_XS_IMPLIED_PRIVILEGES Lists all the implied application privileges
contained in security classes owned by
the current user

DBA_XS_SECURITY_CLASSES Lists all security classes defined in the
database

USER_XS_SECURITY_CLASSES Lists all security classes owned by the
current application user

9-1

Table 9-1 (Cont.) Oracle Database Real Application Security Data Dictionary Views

Data Dictionary View Summary Description

DBA_XS_SECURITY_CLASS_DEP Lists the dependencies between security
classes.

USER_XS_SECURITY_CLASS_DEP Lists the parent security classes for the
dependent security classes owned by the
current user.

DBA_XS_ACLS Lists all existing ACLs

USER_XS_ACLS lists all ACLs owned by the current user

DBA_XS_ACES Lists all the Access Control Entries
(ACEs)

USER_XS_ACES Lists all the ACEs from the ACLs owned
by the current user

DBA_XS_POLICIES Lists all the data security policies

USER_XS_POLICIES Lists all the data security policies owned
by the current application user

DBA_XS_REALM_CONSTRAINTS Lists all Real Application Security realms

USER_XS_REALM_CONSTRAINTS Lists all Real Application Security realms
owned by the current user

DBA_XS_INHERITED_REALMS Lists all Real Application Security
inherited realms

USER_XS_INHERITED_REALMS Lists all Real Application Security
inherited realms owned by the current
user

DBA_XS_ACL_PARAMETERS Lists all Real Application Security ACL
parameters

USER_XS_ACL_PARAMETERS Lists all Real Application Security ACL
parameters defined in data security
policies owned by the current user

DBA_XS_COLUMN_CONSTRAINTS Lists all Real Application Security column
constraints

USER_XS_COLUMN_CONSTRAINTS Lists all Real Application Security column
constraints owned by the current user

DBA_XS_APPLIED_POLICIES Displays all database objects on which
Real Application Security data security
policies are enabled

DBA_XS_MODIFIED_POLICIES Displays all database objects on which
Real Application Security data security
policies are modified

DBA_XS_SESSIONS Lists all application sessions in the
database

DBA_XS_ACTIVE_SESSIONS Lists all attached application sessions in
the database

DBA_XS_SESSION_ROLES Lists application roles enabled in
application sessions

Chapter 9

9-2

Table 9-1 (Cont.) Oracle Database Real Application Security Data Dictionary Views

Data Dictionary View Summary Description

DBA_XS_SESSION_NS_ATTRIBUTES Displays namespace attributes across
application sessions as of last saved
state

DBA_XS_NS_TEMPLATES Describes all Real Application Security
namespace templates

DBA_XS_NS_TEMPLATE_ATTRIBUTES Describes all namespace templates
together with their attribute details

ALL_XDS_ACL_REFRESH Displays all static ACL refresh settings for
tables that are accessible to the
application user.

ALL_XDS_ACL_REFSTAT Displays all static ACL refresh job status
history that has been done for tables
accessible to the application user.

ALL_XDS_LATEST_ACL_REFSTAT Displays the ACL refreshjob status for the
most recent refreshment job for each
table accessible to the application user.

DBA_XDS_ACL_REFRESH Displays all static ACL refresh settings in
the database.

DBA_XDS_ACL_REFSTAT Displays all static ACL refresh job status
history that has been done in the
database

DBA_XDS_LATEST_ACL_REFSTAT Displays the ACL refresh job status for
the most recent refreshment job for each
table in the database

USER_XDS_ACL_REFRESH Displays all static ACL refresh settings for
tables that are owned by the user.

USER_XDS_ACL_REFSTAT Displays all static ACL refresh job status
history that has been done for tables
owned by the user.

USER_XDS_LATEST_ACL_REFSTAT Displays the ACL refresh job status for
the most recent refreshment job for each
table owned by the user.

V$XS_SESSION_NS_ATTRIBUTES Displays information about the
namespaces and attributes in the current
application session.

V$XS_SESSION_ROLES Displays all enabled application roles in
the current application session.

DBA_XS_AUDIT_POLICY_OPTIONS Describes the auditing options that were
defined for Real Application Security
unified audit policies. See Oracle
Database Reference for more
information. For information about unified
auditing in an Oracle Database Real
Application Security environment, see
Oracle Database Security Guide.

Chapter 9

9-3

Table 9-1 (Cont.) Oracle Database Real Application Security Data Dictionary Views

Data Dictionary View Summary Description

DBA_XS_AUDIT_TRAIL Provides detailed information about Real
Application Security that were audited.
See Oracle Database Reference for more
information. For information about unified
auditing in an Oracle Database Real
Application Security environment, see
Oracle Database Security Guide.

DBA_XS_ENB_AUDIT_POLICIES Lists users for whom Real Application
Security unified audit polices are
enabled. See Oracle Database
Reference for more information. For
information about unified auditing in an
Oracle Database Real Application
Security environment, see Oracle
Database Security Guide.

This section describes the following Oracle Database Real Application Security
data dictionary views:

DBA_XS_OBJECTS
The DBA_XS_OBJECTS data dictionary view lists all the existing Real Application Security
objects in the database.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_SECURITY_CLASSES

• DBA_XS_ACLS

• DBA_XS_POLICIES

• DBA_XS_NS_TEMPLATES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the object

OWNER VARCHAR2(128) Owner of the object

ID NUMBER NOT
NULL

Identifier number for the object

Chapter 9
DBA_XS_OBJECTS

9-4

Column Datatype NULL Description

TYPE VARCHAR2(18) Type of the object. Possible values
are:

• PRINCIPAL (Application User/
Application Role)

• SECURITY CLASS
• ACL
• PRIVILEGE
• DATA SECURITY (Policy)
• NAMESPACE TEMPLATE

STATUS VARCHAR2(8) Status of the object. Possible values
are:

• INVALID
• VALID
• EXTERNAL

DBA_XS_PRINCIPALS
The DBA_XS_PRINCIPALS data dictionary view describes all the existing application
users and application roles in the database.

Related Views

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

• DBA_XS_EXTERNAL_PRINCIPALS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the principal (application
user or application role)

GUID RAW(16) Globally unique identifier for the
principal

TYPE VARCHAR2(12) Type of the principal. Possible
values are:

• USER
• ROLE
• DYNAMIC ROLE

EXTERNAL_SOURCE VARCHAR2(128) External source of the principal

DESCRIPTION VARCHAR2(4000) Description of the principal

DBA_XS_EXTERNAL_PRINCIPALS
The DBA_XS_EXTERNAL_PRINCIPALS data dictionary view lists all the external application
users and application roles.

Chapter 9
DBA_XS_PRINCIPALS

9-5

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the external principal

DBA_XS_USERS
The DBA_XS_USERS data dictionary view describes all existing application users defined
in the database.

Related Views

• DBA_XS_PRINCIPALS

• USER_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application user

GUID RAW(16) Globally unique identifier for
the application user

EXTERNAL_SOURCE VARCHAR2(128) External Source of application
users, such as LDAP

ROLES_DEFAULT_ENABLED VARCHAR2(3) Indicates whether all the
application roles granted to
the application user are
enabled by default. Valid
values are YES and NO.

STATUS VARCHAR2(8) Status of the application user.
Valid values are ACTIVE and
INACTIVE.

ACCOUNT_STATUS VARCHAR2(32) NOT
NULL

Direct login password policy
account status of the user.
Indicates whether the account
is locked, expired, or
unlocked.

LOCK_DATE DATE The date the account became
locked for the direct login user

Chapter 9
DBA_XS_USERS

9-6

Column Datatype NULL Description

EXPIRY_DATE DATE The date the passward
became expired for the direct
login user

PROFILE VARCHAR2(128) The name of the database
profile associated with the
application user

SCHEMA VARCHAR2(128) Application user schema

START_DATE TIMESTAMP(6)
WITH TIME ZONE

Effective start date for the
user

END_DATE TIMESTAMP(6)
WITH TIME ZONE

Effective end date for the user

DIRECT_LOGON_USER VARCHAR2(3) Indicates whether this user
has direct logon capability

VERIFIER_TYPE VARCHAR2(11) Type of the verifier assigned
to the direct logon user. Only
XS_SHA512 and
XS_SALTED_SHA1 are
allowed.)

ACL VARCHAR2(128) The Real Application Security
session privilege.

DESCRIPTION VARCHAR2(4000) Description of the application
user

USER_XS_USERS
The USER_XS_USERS data dictionary view describes the current application users own
account information.

Related Views

• DBA_XS_USERS

• DBA_XS_PRINCIPALS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the current application
user

STATUS VARCHAR2(8) Status of the current
application user. Valid values
are ACTIVE and INACTIVE
only.

Chapter 9
USER_XS_USERS

9-7

Column Datatype NULL Description

ACCOUNT_STATUS VARCHAR2(32) NOT
NULL

Direct login password policy
account status of the current
user. Valid values are UNLOCK,
LOCKED, and EXPIRED. UNLOCK
means the current user's
account is open.

LOCK_DATE DATE The date the account became
locked for the direct login
session for the current user

EXPIRY_DATE DATE The date the passward
became expired or the direct
login session for the current
user

DIRECT_LOGON_USER VARCHAR2(3) Indicates whether this user has
direct logon capability

DESCRIPTION VARCHAR2(4000) Description of the application
user

USER_XS_PASSWORD_LIMITS
The USER_XS_PASSWORD_LIMITS data dictionary view describes the password limits for
the currently logged on application user. The DBA can query this view to check the
limits for any direct login user.

Related Views

Column Datatype NULL Description

RESOURCE_NAME VARCHAR2(32) NOT
NULL

Name of the password resource

LIMIT VARCHAR2(128) The limit placed on this resource

DBA_XS_ROLES
The DBA_XS_ROLES data dictionary view describes all existing application roles in the
database.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

• DBA_XS_ROLE_GRANTS

Chapter 9
USER_XS_PASSWORD_LIMITS

9-8

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application role

GUID RAW(16) Globally unique identifier for the
application role

EXTERNAL_SOURCE VARCHAR2(128) External Source of the application
role, such as LDAP

DEFAULT_ENABLED VARCHAR(3) Whether or not the application role
is enabled by default. Values can
be YES or NO.

START_DATE TIMESTAMP(6)
WITH TIME ZONE

Start date from which the
application role is valid

END_DATE TIMESTAMP(6)
WITH TIME ZONE

End date until which the application
role is valid

DESCRIPTION VARCHAR2(4000) Description of the application role

DBA_XS_DYNAMIC_ROLES
The DBA_XS_DYNAMIC_ROLES data dictionary view describes all existing dynamic
application roles in the database.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_ROLE_GRANTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the dynamic application role

GUID RAW(16) Globally unique identifier for the
dynamic application role

DURATION NUMBER Duration (in minutes) for which the
role has been active

SYSTEM_DEFINED VARCHAR2(3) Indicates whether the application role
is a system-defined role. Possible
values are YES and NO.

SCOPE VARCHAR2(7) Scope of the application role.
Possible values are SESSION and
REQUEST.

ACL VARCHAR2(128) The Real Application Security
session privilege.

DESCRIPTION VARCHAR2(4000) Description of the dynamic
application role.

Chapter 9
DBA_XS_DYNAMIC_ROLES

9-9

DBA_XS_PROXY_ROLES
The DBA_XS_PROXY_ROLES data dictionary view describes all Real Application Security
proxy application role grants.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_ROLE_GRANTS

Column Datatype NULL Description

PROXY_USER VARCHAR2(128) Name of the proxy application user

TARGET_USER VARCHAR2(128) Name of the target application user

TARGET_ROLE VARCHAR2(128) Name of the target application role

DBA_XS_ROLE_GRANTS
The DBA_XS_ROLE_GRANTS data dictionary view describes all Real Application Security
application role grants.

Related Views

• DBA_XS_PRINCIPALS

• DBA_XS_USERS

• DBA_XS_ROLES

• DBA_XS_DYNAMIC_ROLES

• DBA_XS_PROXY_ROLES

Column Datatype NULL Description

GRANTEE VARCHAR2(128) Name of the principal to which
the application role is granted

GRANTED_ROLE VARCHAR2(128) Name of the granted application
role

GRANTED_ROLE_TYPE VARCHAR2(11) Name of the granted role

START_DATE TIMESTAMP(6)
WITH TIME ZONE

Start date from which the
application role grant is valid

END_DATE TIMESTAMP(6)
WITH TIME ZONE

End date until which the
application role grant is valid

Chapter 9
DBA_XS_PROXY_ROLES

9-10

DBA_XS_PRIVILEGES
The DBA_XS_PRIVILEGES data dictionary view lists all the Real Application Security
application privileges defined in the database.

Related Views

• USER_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

DESCRIPTION VARCHAR2(4000) Description of the application
privilege.

USER_XS_PRIVILEGES
The USER_XS_PRIVILEGES data dictionary view lists the application privileges contained
in security classes owned by the current user.

Related Views

• DBA_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• USER_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

• ALL_XS_IMPLIED_PRIVILEGES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

DESCRIPTION VARCHAR2(4000) Description of the application
privilege.

Chapter 9
DBA_XS_PRIVILEGES

9-11

ALL_XS_PRIVILEGES
The ALL_XS_PRIVILEGES data dictionary view lists all the Real Application Security
application privileges scoped by the security classes accessible to the current user.

Related Views

• USER_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

DESCRIPTION VARCHAR2(4000) Description of the application
privilege.

DBA_XS_IMPLIED_PRIVILEGES
The DBA_XS_IMPLIED_PRIVILEGES data dictionary view lists all the Real Application
Security implied application privileges defined in the database.

Related Views

• DBA_XS_PRIVILEGES

• USER_XS_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

• ALL_XS_IMPLIED_PRIVILEGES

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege
containing the implied application
privilege

IMPLIED_PRIVILEGE VARCHAR2(128) Name of the implied application
privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

Chapter 9
ALL_XS_PRIVILEGES

9-12

Column Datatype NULL Description

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

USER_XS_IMPLIED_PRIVILEGES
The USER_XS_IMPLIED_PRIVILEGES data dictionary view lists the implied application
privileges contained in security classes owned by the current user.

Related Views

• DBA_XS_PRIVILEGES

• USER_XS_PRIVILEGES

• DBA_XS_IMPLIED_PRIVILEGES

• USER_XS_SECURITY_CLASSES

• ALL_XS_PRIVILEGES

• ALL_XS_IMPLIED_PRIVILEGES

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege
containing the implied application
privilege

IMPLIED_PRIVILEGE VARCHAR2(128) Name of the implied application
privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

ALL_XS_IMPLIED_PRIVILEGES
The ALL_XS_IMPLIED_PRIVILEGES data dictionary view lists all the Real Application
Security implied application privileges scoped by the security classes accessible to the
current user.

Related Views

• DBA_XS_PRIVILEGES

• USER_XS_PRIVILEGES

• USER_XS_IMPLIED_PRIVILEGES

• DBA_XS_SECURITY_CLASSES

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege
containing the implied application
privilege

Chapter 9
USER_XS_IMPLIED_PRIVILEGES

9-13

Column Datatype NULL Description

IMPLIED_PRIVILEGE VARCHAR2(128) Name of the implied application
privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
contains the application privilege

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
contains the application privilege

DBA_XS_PRIVILEGE_GRANTS
The DBA_XS_PRIVILEGE_GRANTS data dictionary view lists all the Real Application
Security system or schema level privilege grants defined in the database.

Related Views

• USER_XS_PRIVILEGES

• DBA_XS_PRIVILEGES

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege

GRANTEE VARCHAR2(128) Name of the user to whom
access was granted

GRANTEE_TYPE VARCHAR2(5) Type of the grantee: Database or
Real Application Security user or
role

SCHEMA VARCHAR2(128) Schema of the privilege

DBA_XS_SECURITY_CLASSES
The DBA_XS_SECURITY_CLASSES data dictionary view lists all Real Application Security
security classes defined in the database.

Related Views

• USER_XS_SECURITY_CLASSES

• DBA_XS_SECURITY_CLASS_DEP

• USER_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

• ALL_XS_SECURITY_CLASS_DEP

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the security class.

OWNER VARCHAR2(128) Owner of the security class.

DESCRIPTION VARCHAR2(4000) Description of the security class.

Chapter 9
DBA_XS_PRIVILEGE_GRANTS

9-14

USER_XS_SECURITY_CLASSES
The USER_XS_SECURITY_CLASSES data dictionary view lists all Real Application Security
security classes owned by the current user.

Related Views

• DBA_XS_SECURITY_CLASSES

• DBA_XS_SECURITY_CLASS_DEP

• USER_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the security class.

DESCRIPTION VARCHAR2(4000) Description of the security class.

ALL_XS_SECURITY_CLASSES
The ALL_XS_SECURITY_CLASSES data dictionary view lists all Real Application Security
security classes accessible to the current user.

Related Views

• USER_XS_SECURITY_CLASSES

• DBA_XS_SECURITY_CLASS_DEP

• USER_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASS_DEP

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the security class.

OWNER VARCHAR2(128) Owner of the security class.

DESCRIPTION VARCHAR2(4000) Description of the security class.

DBA_XS_SECURITY_CLASS_DEP
The DBA_XS_SECURITY_CLASS_DEP data dictionary view lists the dependencies between
all security classes defined in the database.

Related Views

• USER_XS_SECURITY_CLASS_DEP

• DBA_XS_SECURITY_CLASSES

• USER_XS_SECURITY_CLASSES

Chapter 9
USER_XS_SECURITY_CLASSES

9-15

• ALL_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

SECURITY_CLASS VARCHAR2(128) Name of the security class

OWNER VARCHAR2(128) Owner of the security class

PARENT VARCHAR2(128) Name of the parent security class

PARENT_OWNER VARCHAR2(128) Owner of the parent security class

USER_XS_SECURITY_CLASS_DEP
The USER_XS_SECURITY_CLASS_DEP data dictionary view lists the parent security
classes for the dependent security classes owned by the current user.

Related Views

• DBA_XS_SECURITY_CLASS_DEP

• DBA_XS_SECURITY_CLASSES

• USER_XS_SECURITY_CLASSES

• ALL_XS_SECURITY_CLASS_DEP

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

SECURITY_CLASS VARCHAR2(128) Name of the security class

PARENT VARCHAR2(128) Name of the parent security class

PARENT_OWNER VARCHAR2(128) Owner of the parent security class

ALL_XS_SECURITY_CLASS_DEP
The ALL_XS_SECURITY_CLASS_DEP data dictionary view lists all the RAS security
classes that the security classes accessible to the current user are dependent on.

Related Views

• USER_XS_SECURITY_CLASS_DEP

• DBA_XS_SECURITY_CLASSES

• USER_XS_SECURITY_CLASSES

• ALL_XS_SECURITY_CLASSES

Column Datatype NULL Description

SECURITY_CLASS VARCHAR2(128) Name of the security class

OWNER VARCHAR2(128) Owner of the security class

PARENT VARCHAR2(128) Name of the parent security class

Chapter 9
USER_XS_SECURITY_CLASS_DEP

9-16

Column Datatype NULL Description

PARENT_OWNER VARCHAR2(128) Owner of the parent security class

DBA_XS_ACLS
The DBA_XS_ACLS data dictionary view lists all the existing Real Application Security
ACLs defined in the database.

Related Views

• USER_XS_ACLS

• DBA_XS_ACES

• ALL_XS_ACLS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the ACL.

OWNER VARCHAR2(128) Owner of the ACL.

SECURITY_CLASS VARCHAR2(128) Name of the security class
associated with the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class
associated with the ACL.

PARENT_ACL VARCHAR2(128) Name of the parent ACL.

PARENT_ACL_OWNER VARCHAR2(128) Owner of the parent ACL

INHERITANCE_TYPE VARCHAR2(11) Inheritance type of the ACL
(EXTENDED or CONSTRAINED)

DESCRIPTION VARCHAR2(4000) Description of the ACL

USER_XS_ACLS
The USER_XS_ACLS data dictionary view lists all the ACLs owned by the current user.

Related Views

• DBA_XS_ACLS

• USER_XS_ACES

• ALL_XS_ACLS

• ALL_XS_ACES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the ACL.

SECURITY_CLASS VARCHAR2(128) Name of the security class
associated with the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class
associated with the ACL.

Chapter 9
DBA_XS_ACLS

9-17

Column Datatype NULL Description

PARENT_ACL VARCHAR2(128) Name of the parent ACL.

PARENT_ACL_OWNER VARCHAR2(128) Owner of the parent ACL

INHERITANCE_TYPE VARCHAR2(11) Inheritance type of the ACL
(EXTENDED or CONSTRAINED)

DESCRIPTION VARCHAR2(4000) Description of the ACL

ALL_XS_ACLS
The ALL_XS_ACLS data dictionary view lists all the existing Real Application Security
ACLs accessible to the current user.

Related Views

• USER_XS_ACLS

• DBA_XS_ACES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the ACL.

OWNER VARCHAR2(128) Owner of the ACL.

SECURITY_CLASS VARCHAR2(128) Name of the security class
associated with the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class
associated with the ACL.

PARENT_ACL VARCHAR2(128) Name of the parent ACL.

PARENT_ACL_OWNER VARCHAR2(128) Owner of the parent ACL

INHERITANCE_TYPE VARCHAR2(11) Inheritance type of the ACL
(EXTENDED or CONSTRAINED)

DESCRIPTION VARCHAR2(4000) Description of the ACL

DBA_XS_ACES
The DBA_XS_ACES data dictionary view lists all the Access Control Entries (ACEs)
defined in the database.

Related Views

• USER_XS_ACES

• DBA_XS_ACLS

• ALL_XS_ACES

• ALL_XS_ACLS

Column Datatype NULL Description

ACL VARCHAR2(128) Name of the ACL

Chapter 9
ALL_XS_ACLS

9-18

Column Datatype NULL Description

OWNER VARCHAR2(128) Owner of the ACL

ACE_ORDER NUMBER NOT
NULL

Order number of the ACE in the
ACL

START_DATE TIMESTAMP(6) Effective start date of the ACE

END_DATE TIMESTAMP(6) Effective end date of the ACE

GRANT_TYPE VARCHAR2(5) Specifies whether the ACE is a
GRANT or DENY

INVERTED_PRINCIPAL VARCHAR2(3) YES if the principal is inverted,
else NO

PRINCIPAL VARCHAR2(128) Name of the principal to whom
the ACE applies

PRINCIPAL_TYPE VARCHAR2(16) Type of the principal, such as
application user or application
role

PRIVILEGE VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
scopes the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
scopes the ACL

USER_XS_ACES
The USER_XS_ACES data dictionary view lists all the Access Control Entries (ACEs) from
the ACLs owned by the current user.

Related Views

• DBA_XS_ACES

• USER_XS_ACLS

• ALL_XS_ACES

• ALL_XS_ACLS

Column Datatype NULL Description

ACL VARCHAR2(128) Name of the ACL

ACE_ORDER NUMBER NOT
NULL

Order number of the ACE in the
ACL

START_DATE TIMESTAMP(6) Effective start date of the ACE

END_DATE TIMESTAMP(6) Effective end date of the ACE

GRANT_TYPE VARCHAR2(5) Specifies whether the ACE is a
GRANT or DENY

INVERTED_PRINCIPAL VARCHAR2(3) YES if the principal is inverted,
else NO

Chapter 9
USER_XS_ACES

9-19

Column Datatype NULL Description

PRINCIPAL VARCHAR2(128) Name of the principal to whom
the ACE applies

PRINCIPAL_TYPE VARCHAR2(16) Type of the principal, such as
application user or application
role

PRIVILEGE VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
scopes the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
scopes the ACL

ALL_XS_ACES
The ALL_XS_ACES data dictionary view lists all the Access Control Entries (ACEs)
accessible to the current user.

Related Views

• USER_XS_ACES

• DBA_XS_ACLS

Column Datatype NULL Description

ACL VARCHAR2(128) Name of the ACL

OWNER VARCHAR2(128) Owner of the ACL

ACE_ORDER NUMBER NOT
NULL

Order number of the ACE in the
ACL

START_DATE TIMESTAMP(6) Effective start date of the ACE

END_DATE TIMESTAMP(6) Effective end date of the ACE

GRANT_TYPE VARCHAR2(5) Specifies whether the ACE is a
GRANT or DENY

INVERTED_PRINCIPAL VARCHAR2(3) YES if the principal is inverted,
else NO

PRINCIPAL VARCHAR2(128) Name of the principal to whom
the ACE applies

PRINCIPAL_TYPE VARCHAR2(16) Type of the principal, such as
application user or application
role

PRIVILEGE VARCHAR2(128) Name of the application privilege

SECURITY_CLASS VARCHAR2(128) Name of the security class that
scopes the ACL

SECURITY_CLASS_OWNER VARCHAR2(128) Owner of the security class that
scopes the ACL

Chapter 9
ALL_XS_ACES

9-20

DBA_XS_POLICIES
The DBA_XS_POLICIES data dictionary view lists all the existing Real Application
Security data security policies defined in the database.

Related Views

• USER_XS_POLICIES

• DBA_XS_REALM_CONSTRAINTS

• DBA_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the data security policy

OWNER VARCHAR2(128) Owner of the data security policy

CREATE_TIME TIMESTAMP(6) When was the policy created

MODIFY_TIME TIMESTAMP(6) When was the policy last
modified

DESCRIPTION VARCHAR2(4000) Description of the data security
policy

USER_XS_POLICIES
The USER_XS_POLICIES data dictionary view lists all the existing Real Application
Security data security policies owned by the current user.

Related Views

• DBA_XS_POLICIES

• USER_XS_REALM_CONSTRAINTS

• USER_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the data security policy

CREATE_TIME TIMESTAMP(6) When was the policy created

MODIFY_TIME TIMESTAMP(6) When was the policy last modified

DESCRIPTION VARCHAR2(4000) Description of the data security
policy

Chapter 9
DBA_XS_POLICIES

9-21

ALL_XS_POLICIES
The ALL_XS_POLICIES data dictionary view lists all the existing Real Application
Security data security policies accessible to the current user.

Related Views

• USER_XS_POLICIES

• DBA_XS_REALM_CONSTRAINTS

• DBA_XS_COLUMN_CONSTRAINTS

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the data security policy

OWNER VARCHAR2(128) Owner of the data security policy

CREATE_TIME TIMESTAMP(6) When was the policy created

MODIFY_TIME TIMESTAMP(6) When was the policy last
modified

DESCRIPTION VARCHAR2(4000) Description of the data security
policy

DBA_XS_REALM_CONSTRAINTS
The DBA_XS_REALM_CONSTRAINTS data dictionary view displays all existing Real
Application Security realms in the database.

Related Views

• USER_XS_REALM_CONSTRAINTS

• DBA_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

• ALL_XS_COLUMN_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the
data security policy

REALM_TYPE VARCHAR2(13) The type of the realm. Valid values
are REGULAR, PARAMETERIZED, and
INHERITED.

STATIC VARCHAR2(7) Indicates whether the realm is
STATIC or DYNAMIC

REALM VARCHAR2(4000) The data realm.

ACL VARCHAR2(128) ACL associated with the realm if the
realm type is REGULAR

Chapter 9
ALL_XS_POLICIES

9-22

Column Datatype NULL Description

ACL_OWNER VARCHAR2(128) Owner of the ACL associated with
the REGULAR realm

PARENT_OBJECT VARCHAR2(128) Name of the parent object if the
realm type is INHERITED

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object if the
realm type is INHERITED

USER_XS_REALM_CONSTRAINTS
The USER_XS_REALM_CONSTRAINTS data dictionary view displays all existing Real
Application Security realms owned by the current user.

Related Views

• DBA_XS_REALM_CONSTRAINTS

• USER_XS_COLUMN_CONSTRAINTS

• ALL_XS_REALM_CONSTRAINTS

• ALL_XS_COLUMN_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the
data security policy

REALM_TYPE VARCHAR2(13) The type of the realm. Valid values
are REGULAR, PARAMETERIZED, and
INHERITED.

STATIC VARCHAR2(7) Indicates whether the realm is
STATIC or DYNAMIC

REALM VARCHAR2(4000) The data realm.

ACL VARCHAR2(128) ACL associated with the realm if the
realm type is REGULAR

ACL_OWNER VARCHAR2(128) Owner of the ACL associated with
the REGULAR realm

PARENT_OBJECT VARCHAR2(128) Name of the parent object if the
realm type is INHERITED

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object if the
realm type is INHERITED

ALL_XS_REALM_CONSTRAINTS
The ALL_XS_REALM_CONSTRAINTS data dictionary view displays all existing Real
Application Security realms accessible to the current user.

Chapter 9
USER_XS_REALM_CONSTRAINTS

9-23

Related Views

• USER_XS_REALM_CONSTRAINTS

• DBA_XS_COLUMN_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the
data security policy

REALM_TYPE VARCHAR2(13) The type of the realm. Valid values
are REGULAR, PARAMETERIZED, and
INHERITED.

STATIC VARCHAR2(7) Indicates whether the realm is
STATIC or DYNAMIC

REALM VARCHAR2(4000) The data realm.

ACL VARCHAR2(128) ACL associated with the realm if the
realm type is REGULAR

ACL_OWNER VARCHAR2(128) Owner of the ACL associated with
the REGULAR realm

PARENT_OBJECT VARCHAR2(128) Name of the parent object if the
realm type is INHERITED

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object if the
realm type is INHERITED

DBA_XS_INHERITED_REALMS
The DBA_XS_INHERITED_REALMS data dictionary view displays all the inherited Real
Application Security realms in the database.

Related Views

• USER_XS_INHERITED_REALMS

• DBA_XS_REALM_CONSTRAINTS

• ALL_XS_INHERITED_REALMS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the
data security policy

PARENT_OBJECT VARCHAR2(128) Name of the parent object

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object

Chapter 9
DBA_XS_INHERITED_REALMS

9-24

Column Datatype NULL Description

PRIMARY_KEY VARCHAR2(128) The column name in the master
table

FOREIGN_KEY VARCHAR2(4000) The column name or value in the
detail table

FOREIGN_KEY_TYPE VARCHAR2(5) Type of the foreign key. Possible
values are NAME and VALUE.

USER_XS_INHERITED_REALMS
The USER_XS_INHERITED_REALMS data dictionary view displays all the inherited Real
Application Security realms owned by the current user.

Related Views

• DBA_XS_INHERITED_REALMS

• USER_XS_REALM_CONSTRAINTS

• ALL_XS_INHERITED_REALMS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the
data security policy

PARENT_OBJECT VARCHAR2(128) Name of the parent object

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object

PRIMARY_KEY VARCHAR2(128) The column name in the master
table

FOREIGN_KEY VARCHAR2(4000) The column name or value in the
detail table

FOREIGN_KEY_TYPE VARCHAR2(5) Type of the foreign key. Possible
values are NAME and VALUE.

ALL_XS_INHERITED_REALMS
The ALL_XS_INHERITED_REALMS data dictionary view displays all the inherited Real
Application Security realms accessible to the current user.

Related Views

• USER_XS_INHERITED_REALMS

• DBA_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy

Chapter 9
USER_XS_INHERITED_REALMS

9-25

Column Datatype NULL Description

POLICY_OWNER VARCHAR2(128) Owner of the data security policy

REALM_ORDER NUMBER NOT
NULL

The order of the realm within the
data security policy

PARENT_OBJECT VARCHAR2(128) Name of the parent object

PARENT_SCHEMA VARCHAR2(128) Schema of the parent object

PRIMARY_KEY VARCHAR2(128) The column name in the master
table

FOREIGN_KEY VARCHAR2(4000) The column name or value in the
detail table

FOREIGN_KEY_TYPE VARCHAR2(5) Type of the foreign key. Possible
values are NAME and VALUE.

DBA_XS_ACL_PARAMETERS
The DBA_XS_ACL_PARAMETERS data dictionary view displays all existing Real Application
Security ACL parameters.

Related Views

• USER_XS_ACL_PARAMETERS

• DBA_XS_REALM_CONSTRAINTS

• ALL_XS_ACL_PARAMETERS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy
where the ACL parameter is defined

POLICY_OWNER VARCHAR2(128) Owner of the data security policy
where the ACL parameter is defined

ACL VARCHAR2(128) Name of the ACL

ACL_OWNER VARCHAR2(128) Owner of the ACL

PARAMETER VARCHAR2(128) Name of the ACL parameter

DATATYPE VARCHAR2(9) Data type of the ACL parameter

VALUE VARCHAR2(4000) Value of the ACL parameter

REALM_ORDER NUMBER The order of the realm within the
data security policy

REALM VARCHAR2(4000) The realm that contains the ACL
parameter

USER_XS_ACL_PARAMETERS
The USER_XS_ACL_PARAMETERS data dictionary view displays all ACL parameters
defined in the data security policies owned by the current user.

Chapter 9
DBA_XS_ACL_PARAMETERS

9-26

Related Views

• DBA_XS_ACL_PARAMETERS

• USER_XS_REALM_CONSTRAINTS

• ALL_XS_ACL_PARAMETERS

• ALL_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy
where the ACL parameter is defined

ACL VARCHAR2(128) Name of the ACL

ACL_OWNER VARCHAR2(128) Owner of the ACL

PARAMETER VARCHAR2(128) Name of the ACL parameter

DATATYPE VARCHAR2(9) Data type of the ACL parameter

VALUE VARCHAR2(4000) Value of the ACL parameter

REALM_ORDER NUMBER The order of the realm within the
data security policy

REALM VARCHAR2(4000) The realm that contains the ACL
parameter

ALL_XS_ACL_PARAMETERS
The ALL_XS_ACL_PARAMETERS data dictionary view displays all existing Real Application
Security ACL parameters defined in the data security policies accessible to the current
user.

Related Views

• USER_XS_ACL_PARAMETERS

• DBA_XS_REALM_CONSTRAINTS

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy
where the ACL parameter is defined

POLICY_OWNER VARCHAR2(128) Owner of the data security policy
where the ACL parameter is defined

ACL VARCHAR2(128) Name of the ACL

ACL_OWNER VARCHAR2(128) Owner of the ACL

PARAMETER VARCHAR2(128) Name of the ACL parameter

DATATYPE VARCHAR2(9) Data type of the ACL parameter

VALUE VARCHAR2(4000) Value of the ACL parameter

REALM_ORDER NUMBER The order of the realm within the
data security policy

Chapter 9
ALL_XS_ACL_PARAMETERS

9-27

Column Datatype NULL Description

REALM VARCHAR2(4000) The realm that contains the ACL
parameter

DBA_XS_COLUMN_CONSTRAINTS
The DBA_XS_COLUMN_CONSTRAINTS data dictionary view lists all Real Application
Security column constraints defined in the database.

Related Views

• USER_XS_COLUMN_CONSTRAINTS

• DBA_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

Column Datatype NULL Description

POLICY VARCHAR2(128) NA Name of the data security policy
containing the column constraint

OWNER VARCHAR2(128) NA Owner of the data security policy
containing the column constraint

COLUMN_NAME VARCHAR2(128) NA Name of the column that has the column
constraint applied to it

PRIVILEGE VARCHAR2(128) NA Name of the application privilege
required to access the column

USER_XS_COLUMN_CONSTRAINTS
The USER_XS_COLUMN_CONSTRAINTS data dictionary view lists all Real Application
Security column constraints owned by the current user.

Related Views

• DBA_XS_COLUMN_CONSTRAINTS

• USER_XS_POLICIES

• ALL_XS_COLUMN_CONSTRAINTS

• ALL_XS_POLICIES

Column Datatype NULL Description

POLICY VARCHAR2(128) Name of the data security policy
containing the column constraint

OWNER VARCHAR2(128) Owner of the data security policy
containing the column constraint

COLUMN_NAME VARCHAR2(128) Name of the column that has the column
constraint applied to it

Chapter 9
DBA_XS_COLUMN_CONSTRAINTS

9-28

Column Datatype NULL Description

PRIVILEGE VARCHAR2(128) Name of the application privilege
required to access the column

ALL_XS_COLUMN_CONSTRAINTS
The ALL_XS_COLUMN_CONSTRAINTS data dictionary view lists all Real Application
Security column constraints accessible to the current user.

Related Views

• USER_XS_COLUMN_CONSTRAINTS

• DBA_XS_POLICIES

Column Datatype NULL Description

POLICY VARCHAR2(128) NA Name of the data security policy
containing the column constraint

OWNER VARCHAR2(128) NA Owner of the data security policy
containing the column constraint

COLUMN_NAME VARCHAR2(128) NA Name of the column that has the column
constraint applied to it

PRIVILEGE VARCHAR2(128) NA Name of the application privilege
required to access the column

DBA_XS_APPLIED_POLICIES
The DBA_XS_APPLIED_POLICIES data dictionary view displays all database objects on
which Real Application Security data security policies are enabled.

Related Views

• DBA_XS_POLICIES

• ALL_XS_POLICIES

Column Datatype NULL Description

SCHEMA VARCHAR2(128) NOT
NULL

Schema containing the object

OBJECT VARCHAR2(128) NOT
NULL

Name of the data security enabled
object in the database

POLICY VARCHAR2(128) Name of the data security policy
associated with the object

POLICY_OWNER VARCHAR2(128) NOT
NULL

Owner of the data security policy
associated with the object

SEL VARCHAR2(3) Policy enabled for SELECT statements

INS VARCHAR2(3) Policy enabled for INSERT statements

UPD VARCHAR2(3) Policy enabled for UPDATE statements

Chapter 9
ALL_XS_COLUMN_CONSTRAINTS

9-29

Column Datatype NULL Description

DEL VARCHAR2(3) Policy enabled for DELETE statements

IDX VARCHAR2(3) Policy enabled for INDEX statements

STATUS VARCHAR2(8) ENABLED if the data security policy is
enabled for the object, else DISABLED

ALL_XS_APPLIED_POLICIES
The ALL_XS_APPLIED_POLICIES data dictionary view displays all database objects on
which Real Application Security data security policies are accessible to the current
user are enabled.

Related Views

• DBA_XS_POLICIES

Column Datatype NULL Description

SCHEMA VARCHAR2(128) NOT
NULL

Schema containing the object

OBJECT VARCHAR2(128) NOT
NULL

Name of the data security enabled
object in the database

POLICY VARCHAR2(128) Name of the data security policy
associated with the object

POLICY_OWNER VARCHAR2(128) NOT
NULL

Owner of the data security policy
associated with the object

SEL VARCHAR2(3) Policy enabled for SELECT statements

INS VARCHAR2(3) Policy enabled for INSERT statements

UPD VARCHAR2(3) Policy enabled for UPDATE statements

DEL VARCHAR2(3) Policy enabled for DELETE statements

IDX VARCHAR2(3) Policy enabled for INDEX statements

STATUS VARCHAR2(8) ENABLED if the data security policy is
enabled for the object, else DISABLED

DBA_XS_MODIFIED_POLICIES
The DBA_XS_MODIFIED_POLICIES data dictionary view displays all database objects on
which Real Application Security data security policies are modified.

Related Views

• DBA_XS_POLICIES

• DBA_XS_APPLIED_POLICIES

Chapter 9
ALL_XS_APPLIED_POLICIES

9-30

Column Datatype NULL Description

POLICY VARCHAR2(128) NOT
NULL

Name of the data security policy
associated with the object

OBJECT VARCHAR2(128) NOT
NULL

Name of the data security modified
object in the database

DBA_XS_SESSIONS
The DBA_XS_SESSIONS dynamic data dictionary view displays all the application
sessions in the database. Only database administrators can select from this view.

Related Views

• DBA_XS_ACTIVE_SESSIONS

• DBA_XS_SESSION_ROLES

• DBA_XS_SESSION_NS_ATTRIBUTES

Column Datatype NULL Description

USER_NAME VARCHAR2(128) NOT NULL Application user name of the application session

SESSIONID RAW(16) NOT NULL Application Session identifier

PROXY_USER VARCHAR2(128) Name of the proxy application user

COOKIE VARCHAR2(1024) The server-unique cookie value associated with
the session

CREATE_TIME TIMESTAMP(6) NOT NULL Creation time for the application session

AUTH_TIME TIMESTAMP(6) NOT NULL Last time the application user was
authenticated.

ACCESS_TIME TIMESTAMP(6) NOT NULL Last time that the application session was
accessed

INACTIVE_TIMEOUT NUMBER(6) The amount of time (in minutes) before the
application session is considered timed out

DBA_XS_ACTIVE_SESSIONS
The DBA_XS_ACTIVE_SESSIONS dynamic data dictionary view displays all attached
application sessions in the database. Only database administrators can select from
this view.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_SESSION_ROLES

• DBA_XS_SESSION_NS_ATTRIBUTES

Chapter 9
DBA_XS_SESSIONS

9-31

Column Datatype NULL Description

USER_NAME VARCHAR2(128) NOT NULL Application user name of the application
session

SESSIONID RAW(16) NOT NULL Application Session identifier

DATABASE_SESSIONID NUMBER The database session ID to which the
application session is associated.

PROXY_USER VARCHAR2(128) Name of the proxy application user

COOKIE VARCHAR2(1024) The server-unique cookie value associated with
the session

CREATE_TIME TIMESTAMP(6) NOT NULL Creation time for the application session

AUTH_TIME TIMESTAMP(6) NOT NULL Last time the application user was
authenticated.

ACCESS_TIME TIMESTAMP(6) NOT NULL Last time that the application session was
accessed

INACTIVE_TIMEOUT NUMBER(6) The amount of time (in minutes) before the
application session is considered timed out

DBA_XS_SESSION_ROLES
The DBA_XS_SESSION_ROLES dynamic data dictionary view lists application roles
enabled in application sessions.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_ACTIVE_SESSIONS

• DBA_XS_SESSION_NS_ATTRIBUTES

Column Datatype NULL Description

SESSIONID RAW(16) NOT NULL Application session ID

ROLE VARCHAR2(128) NOT NULL Name of the application role

DBA_XS_SESSION_NS_ATTRIBUTES
The DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view displays namespace
attributes across application sessions as of last saved state.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_ACTIVE_SESSIONS

• DBA_XS_SESSION_ROLES

Chapter 9
DBA_XS_SESSION_ROLES

9-32

Column Datatype NULL Description

SESSIONID RAW(16) NOT
NULL

Session ID of the
application session

ATTRIBUTE VARCHAR2(4000) Name of the attribute

NAMESPACE VARCHAR2(128) NOT
NULL

Name of the
namespace

VALUE VARCHAR2(4000) Value of the attribute

DEFAULT_VALUE VARCHAR2(4000) Default value of the
attribute

FIRSTREAD_EVENT VARCHAR2(2) Indicates whether the
handler function is
invoked when the
attribute is first read.
Possible values are YES
and NO.

MODIFY_EVENT VARCHAR2(2) Indicates whether the
handler function is
invoked when the
attribute is modified.
Possible values are YES
and NO.

DBA_XS_NS_TEMPLATES
The DBA_XS_NS_TEMPLATES data dictionary view describes all Real Application Security
namespace templates.

Related Views

• DBA_XS_NS_TEMPLATE_ATTRIBUTES

Column Datatype NULL Description

NAME VARCHAR2(128) Name of the
namespace template

HANDLER_SCHEMA VARCHAR2(128) Schema of the
namespace handler
function

HANDLER_PACKAGE VARCHAR2(128) Package containing
the namespace
handler function

HANDLER_FUNCTION VARCHAR2(128) The namespace
handler function

HANDLER_STATUS VARCHAR2(7) Indicates whether the
namespace handler
function is VALID or
INVALID.

ACL VARCHAR2(128) Name of ACL for the
namespace template.

Chapter 9
DBA_XS_NS_TEMPLATES

9-33

Column Datatype NULL Description

DESCRIPTION VARCHAR2(4000) Description of the
namespace template.

DBA_XS_NS_TEMPLATE_ATTRIBUTES
The DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary view describes all namespace
attributes defined in namespace template documents.

Related Views

• DBA_XS_NS_TEMPLATES

Column Datatype NULL Description

ATTRIBUTE VARCHAR2(4000) Name of the attribute
defined in the
namespace template

NAMESPACE VARCHAR2(128) Name of the namespace
instantiated by the
namespace template

DEFAULT_VALUE VARCHAR2(4000) Default value of the
attribute defined in the
namespace template

FIRSTREAD_EVENT VARCHAR2(3) Indicates whether the
namespace handler
function is invoked when
the attribute is first read.
Valid values are YES and
NO.

MODIFY_EVENT VARCHAR2(3) Indicates whether the
namespace handler
function is invoked when
the attribute value is
modified. Valid values
are YES and NO.

ALL_XDS_ACL_REFRESH
The ALL_XDS_ACL_REFRESH data dictionary view displays all static ACL refresh settings
for tables that are accessible to the application user.

Related Views

• DBA_XDS_ACL_REFRESH

• USER_XDS_ACL_REFRESH

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

Chapter 9
DBA_XS_NS_TEMPLATE_ATTRIBUTES

9-34

Column Datatype NULL Description

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

ACL_MVIEW_NAME VARCHAR2(128) NOT
NULL

Name of ACL MV for this table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

ACL_STATUS VARCHAR2(5) STALE or FRESH

USER_SUPPLIED_MV VARCHAR2(1) Y or N

START_DATE TIMESTAMP(6)
WITH TIME ZONE

The refreshment job scheduled to
run after the timestamp, if
scheduled

REPEAT_INTERVAL VARCHAR2(4000) The repeat_interval to run the
refreshment job, if scheduled

REFRESH_COUNT NUMBER Number of times this ACL MV has
been refreshed so far

COMMENTS VARCHAR2(240) Comments for the refreshment

ALL_XDS_ACL_REFSTAT
The ALL_XDS_ACL_REFSTAT data dictionary view displays all static ACL refresh job
status history that has been done for tables that are accessible to the application user.

Related Views

• DBA_XDS_ACL_REFSTAT

• USER_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

JOB_START_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job starting time

JOB_END_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated
for static ACL sync

Chapter 9
ALL_XDS_ACL_REFSTAT

9-35

Column Datatype NULL Description

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if
there is any.

ALL_XDS_LATEST_ACL_REFSTAT
The ALL_XDS_LATEST_ACL_REFSTAT data dictionary view displays all latest static ACL
refresh job status history that has been done for tables that are accessible to the
application user. It has the same schema as ALL_XDS_ACL_REFSTAT dictionary view, but
a subset of its rows.

Related Views

• DBA_XDS_LATEST_ACL_REFSTAT

• USER_XDS_LATEST_ACL_REFSTAT

• ALL_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

JOB_START_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job starting time

JOB_END_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated
for static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an
error number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if
there is any.

DBA_XDS_ACL_REFRESH
The DBA_XDS_ACL_REFRESH data dictionary view displays all static ACL refresh settings
in the database.

Chapter 9
ALL_XDS_LATEST_ACL_REFSTAT

9-36

Related Views

• ALL_XDS_ACL_REFRESH

• USER_XDS_ACL_REFRESH

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

ACL_MVIEW_NAME VARCHAR2(128) NOT
NULL

Name of ACL MV for this table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

ACL_STATUS VARCHAR2(5) STALE or FRESH

USER_SUPPLIED_MV VARCHAR2(1) Y or N

START_DATE TIMESTAMP(6)
WITH TIME ZONE

The refreshment job scheduled to run
after the timestamp, if scheduled

REPEAT_INTERVAL VARCHAR2(4000) The repeat_interval to run the
refreshment job, if scheduled.

REFRESH_COUNT NUMBER Number of refreshment has been
done so far

COMMENTS VARCHAR2(240) Comments for the refreshment

DBA_XDS_ACL_REFSTAT
The DBA_XDS_ACL_REFSTAT data dictionary view displays all static ACL refresh job
status history that has been done in the database.

Related Views

• ALL_XDS_ACL_REFSTAT

• USER_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

JOB_START_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job starting time

Chapter 9
DBA_XDS_ACL_REFSTAT

9-37

Column Datatype NULL Description

JOB_END_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated
for static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if
there is any.

DBA_XDS_LATEST_ACL_REFSTAT
The DBA_XDS_LATEST_ACL_REFSTAT data dictionary view displays all latest static ACL
refresh job status history that has been done in the database. It has the same schema
as DBA_XDS_ACL_REFSTAT dictionary view, but a subset of its rows.

Related Views

• ALL_XDS_LATEST_ACL_REFSTAT

• USER_XDS_LATEST_ACL_REFSTAT

• DBA_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

JOB_START_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated
for static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if
there is any.

Chapter 9
DBA_XDS_LATEST_ACL_REFSTAT

9-38

USER_XDS_ACL_REFRESH
The USER_XDS_ACL_REFRESH data dictionary view displays all static ACL refresh
settings for tables that are owned by the user.

Related Views

• ALL_XDS_ACL_REFRESH

• DBA_XDS_ACL_REFRESH

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

ACL_MVIEW_NAME VARCHAR2(128) NOT
NULL

Name of ACL MV for this table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

ACL_STATUS VARCHAR2(5) STALE or FRESH

USER_SUPPLIED_MV VARCHAR2(1) Y or N

START_DATE TIMESTAMP(6)
WITH TIME ZONE

The refreshment job scheduled to
run after the timestamp, if scheduled

REPEAT_INTERVAL VARCHAR2(4000) The repeat_interval to run the
refreshment job, if scheduled.

REFRESH_COUNT NUMBER Number of refreshment has been
done so far

COMMENTS VARCHAR2(240) Comments for the refreshment

USER_XDS_ACL_REFSTAT
The USER_XDS_ACL_REFSTAT data dictionary view displays all static ACL refresh job
status history that has been done for tables that are owned by the user.

Related Views

• ALL_XDS_ACL_REFSTAT

• DBA_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

Chapter 9
USER_XDS_ACL_REFRESH

9-39

Column Datatype NULL Description

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

JOB_START_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job starting time

JOB_END_TIME TIMESTAMP(6)
WITH TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated
for static ACL sync

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if
there is any.

USER_XDS_LATEST_ACL_REFSTAT
The USER_XDS_LATEST_ACL_REFSTAT data dictionary view displays all latest static ACL
refresh job status history that has been done for tables that are owned by the user. It
has the same schema as USER_XDS_ACL_REFSTAT dictionary view, but a subset of its
rows.

Related Views

• ALL_XDS_LATEST_ACL_REFSTAT

• DBA_XDS_LATEST_ACL_REFSTAT

• USER_XDS_ACL_REFSTAT

Column Datatype NULL Description

SCHEMA_NAME VARCHAR2(128) NOT
NULL

Name of schema

TABLE_NAME VARCHAR2(128) NOT
NULL

Name of table

REFRESH_MODE VARCHAR2(9) ON COMMIT, SCHEDULED, or ON
DEMAND

REFRESH_ABILITY VARCHAR2(11) COMPLETE or INCREMENTAL

JOB_START_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job starting time

JOB_END_TIME TIMESTAMP(6) WITH
TIME ZONE

The refreshment job ending time

ROW_UPDATE_COUNT NUMBER Number of rows have been updated
for static ACL sync

Chapter 9
USER_XDS_LATEST_ACL_REFSTAT

9-40

Column Datatype NULL Description

STATUS NUMBER Refreshment job status:

0 means success, otherwise an error
number is displayed.

ERROR_MESSAGE VARCHAR2(4000) The error message for the error, if
there is any.

V$XS_SESSION_NS_ATTRIBUTES
The V$XS_SESSION_NS_ATTRIBUTES dynamic data dictionary view displays information
about the namespaces and attributes in all application sessions in the database as of
the end of the last request. The state of any active request is not reflected in this view.
Only database administrators can select from this view.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_SESSION_NS_ATTRIBUTES

• V$XS_SESSION_ROLES

Column Datatype NULL Description

NAMESPACE_NAME VARCHAR2(4000) Name of the namespace

WORKSPACE_NAME VARCHAR2(129) Name of the workspace space
for the namespace

ATTRIBUTE_NAME VARCHAR2(4000) Name of the attribute

ATTRIBUTE_VALUE VARCHAR2(4000) Value of the attribute

ATTRIBUTE_EVENTS VARCHAR2(4000) Events associated with this
attribute

ATTRIBUTE_DEFAULT_VAL
UE

VARCHAR2(4000) Default value for the attribute

ATTRIBUTE_TYPE VARCHAR2(4000) Type of attribute, either
TEMPLATE or CUSTOM

CON_ID NUMBER Container ID

V$XS_SESSION_ROLES
The V$XS_SESSION_ROLES static data dictionary view displays all enabled application
roles in application session in the current request.

Related Views

• DBA_XS_SESSIONS

• DBA_XS_SESSION_ROLES

• V$XS_SESSION_NS_ATTRIBUTES

Chapter 9
V$XS_SESSION_NS_ATTRIBUTES

9-41

Column Datatype NULL Description

ROLE_WSPACE VARCHAR2(129) The workspace of the application role.

ROLE_NAME VARCHAR2(4000) Name of enabled application role

FLAGS NUMBER Status flag

CON_ID NUMBER Container ID

Chapter 9
V$XS_SESSION_ROLES

9-42

10
Oracle Database Real Application Security
SQL Functions

This chapter describes the SQL functions and procedures that are available with
Oracle Database Real Application Security.

Table 10-1 summarizes these functions and procedures. Detailed information on each
function and procedure follows this table.

Table 10-1 Oracle Database Real Application Security SQL Functions and Procedures

SQL Function or Procedure Brief Description

COLUMN_AUTH_INDICATOR Function Checks whether the specified table column is authorized on a
particular table row.

XS_SYS_CONTEXT Function Retrieves the session attributes and the XS$GLOBAL_VAR
namespace attribute for the current application session.

ORA_CHECK_ACL Function Checks whether an application user has the queried application
privileges according to a list of ACLs.

ORA_GET_ACLIDS Function Returns a list of ACL identifiers associated with an object instance of
the XDS-enabled tables for the current application user.

ORA_CHECK_PRIVILEGE Function Checks whether the specified system privileges have been granted
to an application user

TO_ACLID Function Returns the ACL IDs of the supplied ACL names

COLUMN_AUTH_INDICATOR Function
The COLUMN_AUTH_INDICATOR function checks whether the specified table column is
authorized on a particular table row. If the current application user is authorized by
data security policies to access the column value of the current row, or if the column is
not protected by any data security policies, then it returns 1. If the application user is
not authorized, it returns 0.

Syntax

COLUMN_AUTH_INDICATOR(col)
RETURN BOOLEAN;

Parameters

Parameter Description

col A column in a table or view.

This parameter does not accept object type columns or expressions.

10-1

Example

SELECT po_number, project_id, region,
 DECODE(COLUMN_AUTH_INDICATOR(price), 0, 'xxxxxx', 1, price) price
 FROM purchaseorder
 WHERE po_number
 BETWEEN 10000 and 10003;

See Also:

• "Applying Additional Application Privileges to a Column" for more
detailed example of using the COLUMN_AUTH_INDICATOR function

• Oracle Database Real Application Security Data Dictionary Views for
information about the ALL_ATTRIBUTE_SECS, DBA_ATTRIBUTE_SECS, and
USER_ATTRIBUTE_SECS data dictionary views, which list existing tables
that use column level security

XS_SYS_CONTEXT Function
The XS_SYS_CONTEXT function provides quick access to session attributes in the current
application session without incurring the overhead that results from using the PL/SQL
APIs. The SYS_XS_CONTEXT function definition mirrors that of the SYS_CONTEXT function
and can be described as application session counterpart to SYS_CONTEXT.
XS_SYS_CONTEXT returns the requested namespace and attribute. If they do not exist,
then it returns NULL.

Table 10-2 lists the attributes in predefined namespace XS$SESSION.

Table 10-2 Predefined Parameters

Parameter Return Value

CREATED_BY The owner who created the current application
session.

CREATE_TIME The time in which the current application session was
created.

COOKIE The secure session cookie, passed as the parameter,
that can be used to identify the newly created Real
Application Security application session in future
calls, until the cookie value is changed or the session
is destroyed.

CURRENT_XS_USER The name of the Real Application Security session
application user whose privileges are currently active.

CURRENT_XS_USER_GUID The identifier of the Real Application Security session
application user whose privileges are currently active.

INACTIVITY_TIMEOUT The specified inactivity timeout value in minutes for
the current application session.

LAST_ACCESS_TIME The last time the session was accessed by a session
application user.

Chapter 10
XS_SYS_CONTEXT Function

10-2

Table 10-2 (Cont.) Predefined Parameters

Parameter Return Value

LAST_AUTHENTICATION_TIME The last time the session application user was
authenticated.

LAST_UPDATED_BY The last time the application session was updated.

PROXY_GUID Identifier of the Real Application Security session
application user who opened the current session on
behalf of SESSION_XS_USER.

SESSION_ID The session identifier for the application session.

SESSION_XS_USER The name of the Real Application Security session
application user at logon.

SESSION_XS_USER_GUID The identifier of the Real Application Security session
application user at logon.

USERNAME The session application user name.

USER_ID The identifier of the session application user.

To retrieve the name of the currently attached Real Application Security session
application user, you can use the following form of the XS_SYS_CONTEXT function:

XS_SYS_CONTEXT('XS$SESSION', 'SESSION_XS_USER')

The function returns NULL if no Real Application Security session is currently attached
to the database session. The function returns the currently attached Real Application
Security session application user even if it is called from within the body of a definer's
rights unit, like a definer's rights view.

To retrieve the identifier (ID) for the currently attached Real Application Security
session application user, you can use the following form of the XS_SYS_CONTEXT
function:

XS_SYS_CONTEXT('XS$SESSION', 'SESSION_XS_USER_GUID')

The function returns NULL if no Real Application Security session is currently attached
to the database session. The function returns the currently attached Real Application
Security session application user ID even if it is called from within the body of a
definer's rights unit, like a definer's rights view.

Syntax

XS_SYS_CONTEXT(
 namespace IN VARCHAR2
 attribute IN VARCHAR2)
RETURN VARCHAR2;

Chapter 10
XS_SYS_CONTEXT Function

10-3

Parameters

Parameter Description

namespace The name of the application context. You can specify either a string or an
expression.

To find information about the namespaces and attributes for the current
application session, query the V$XS_SESSION_NS_ATTRIBUTES data
dictionary view.

attribute A parameter within the namespace application context.

Example

SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM DUAL;

ORA_CHECK_ACL Function
The ORA_CHECK_ACL function checks whether an application user has the queried
application privileges according to a list of ACLs. Oracle Database uses this function
automatically when the application user runs a query on a table that has data security
policy enabled. If the specified application privileges have been granted to the
application user, ORA_CHECK_ACL returns 1. If they are not granted to the application
user, then it returns 0.

Syntax

ORA_CHECK_ACL(
 acls IN RAW,
 (privileges IN VARCHAR(128))+)
return NUMBER;

Parameters

Parameter Description

acls RAW list of ACL ids of 8 byte. The maximum number of acls allowed
is 250.

privileges The application privilege names being checked. The maximum
number of application privileges allowed is 100.

Examples

The following example uses ORA_CHECK_ACL to check whether the application user has
been granted the P1 and P2 application privileges in the ACL1 ACL.

SELECT ORA_CHECK_ACL(TO_ACLID('ACL1'),'P1', 'P2') INTO ACLRESULT FROM DUAL;

ORA_GET_ACLIDS Function
The ORA_GET_ACLIDS function returns a list of ACL IDS associated with an object
instance of data security policy enabled tables for the current application user. Oracle
Database evaluates every dynamic data realm constraint rule, because
ORA_GET_ACLIDS captures all ACL identifiers that are associated with the matching

Chapter 10
ORA_CHECK_ACL Function

10-4

data realm constraints, if access to the current row has been granted. If the data realm
constraints are from detail tables in a master-detail relationship, ORA_GET_ACLIDS
retrieves the ACL identifiers from the master table as well as the detail table. If multiple
data security policies have been applied to a table, ORA_GET_ACLIDS returns the ACLs
associated with each policy.

Syntax

ORA_GET_ACLIDS (
 table_alias IN VARCHAR2,
 (privileges IN VARCHAR(128))+)
RETURN RAW;

Parameters

Parameter Description

table_alias Table or view object alias in the query from a clause.

Ensure that the table is XDS-enabled. To do so, query the
DBA_XS_APPLIED_POLICIES data dictionary view.

If you specify a view that is resolved to XDS-enabled tables, and if there
are more than one XDS-enabled tables in the view, then Oracle Database
only returns one of the tables.

privileges The application privilege names that are associated with the returned ACL
identifiers. The maximum number of application privileges allowed is 100.

Example

SELECT ORA_GET_ACLIDS(t, 'SELECT', 'VIEW_LOC') from SCOTT.DEPT t;

ORA_CHECK_PRIVILEGE Function
The ORA_CHECK_PRIVILEGE function checks whether the specified privileges have been
granted to an application user. If the specified privileges have been granted to the
application user, ORA_CHECK_PRIVILEGE returns 1. This function only works for system
privileges, such as CREATE_SESSION. If the system privileges are not granted to the
application user, then it returns 0.

Syntax

ORA_CHECK_PRIVILEGE(
 (privs IN VARCHAR(128))+)
return NUMBER;

Parameters

Parameter Description

privs The privilege names being checked. The maximum number of
privileges allowed is 100.

Examples

The following example uses ORA_CHECK_PRIVILEGE to check whether the application
user has been granted the CREATE_SESSION system privilege.

Chapter 10
ORA_CHECK_PRIVILEGE Function

10-5

SELECT ORA_CHECK_PRIVILEGE('CREATE_SESSION') FROM DUAL;

TO_ACLID Function
The TO_ACLID function returns the ACL IDs of the ACL names supplied to it.

Syntax

TO_ACLID(
 (acls IN VARCHAR(128))+)
return NUMBER;

Parameters

Parameter Description

acls The ACL names whose ACL IDs are returned.

Examples

The following example uses the TO_ACLID function to return the ACL ID for ACL1.

SELECT ORA_CHECK_ACL(TO_ACLID('ACL1'),'P1', 'P2') INTO ACLRESULT FROM DUAL;

Chapter 10
TO_ACLID Function

10-6

11
Oracle Database Real Application Security
PL/SQL Packages

This chapter describes the PL/SQL packages that are available with Oracle Database
Real Application Security.

Table 11-1 lists these packages. Detailed information on each package follows this
table.

Table 11-1 Oracle Database Real Application Security PL/SQL Packages

PL/SQL Package Description

DBMS_XS_SESSIONS Package Includes subprograms to manage an application session.

XS_ACL Package Includes subprograms to create, manage, and delete
Access Control Lists (ACLs) and to add and remove
parameter values.

XS_ADMIN_UTIL Package Includes helper subprograms.

XS_DATA_SECURITY Package Includes subprograms to create, manage, and delete
data security policies, associated data realm constraints,
column constraints, and ACL parameters.

XS_DATA_SECURITY_UTIL
Package

Includes subprograms to schedule automatic
refreshment for static ACL to a user table and change
the ACL refreshment mode to on-commit or on-demand
refresh.

XS_DIAG Package Includes subprograms to diagnose potential problems in
Real Application Security objects and report identified
inconsistencies.

XS_NAMESPACE Package Includes subprograms to create, manage, and delete
namespace templates and attributes.

XS_PRINCIPAL Package Includes subprograms to create, manage, and delete
application users and roles.

XS_SECURITY_CLASS Package Includes subprograms to create, manage, and delete
security classes and their privileges. Also includes
subprograms for managing security class inheritance.

This section describes the following Oracle Database Real Application Security PL/
SQL packages:

DBMS_XS_SESSIONS Package
The DBMS_XS_SESSIONS package manages an application session.

This section includes the following topics:

• Security Model

• Constants

11-1

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of DBMS_XS_SESSIONS Subprograms

Security Model
The DBMS_XS_SESSIONS package is created in the SYS schema. The privilege to
execute the package is granted to PUBLIC. The executing user must have the
appropriate privilege for the particular operation.

Constants
The following constants define operation codes passed into namespace event
handling functions:

attribute_first_read_operation CONSTANT PLS_INTEGER := 1;
modify_attribute_operation CONSTANT PLS_INTEGER := 2;

The following constants represent bit values that identify events of interest for a
particular attribute in a namespace that has an event handling function:

attribute_first_read_event CONSTANT PLS_INTEGER := 1;
modify_attribute_event CONSTANT PLS_INTEGER := 2;

The following constants define return codes that can be returned by a namespace
event handling function:

event_handling_succeeded CONSTANT PLS_INTEGER := 0;
event_handling_failed CONSTANT PLS_INTEGER := 1;

The following constants are used as input into the ADD_GLOBAL_CALLBACK,
DELETE_GLOBAL_CALLBACK, and ENABLE_GLOBAL_CALLBACK procedures:

create_session_event CONSTANT PLS_INTEGER := 1;
attach_session_event CONSTANT PLS_INTEGER := 2;
guest_to_user_event CONSTANT PLS_INTEGER := 3;
proxy_to_user_event CONSTANT PLS_INTEGER := 4;
revert_to_user_event CONSTANT PLS_INTEGER := 5;
enable_role_event CONSTANT PLS_INTEGER := 6;
disable_role_event CONSTANT PLS_INTEGER := 7;
enable_dynamic_role_event CONSTANT PLS_INTEGER := 8;
disable_dynamic_role_event CONSTANT PLS_INTEGER := 9;
detach_session_event CONSTANT PLS_INTEGER := 10;
terminate_session_event CONSTANT PLS_INTEGER := 11;
direct_login_event CONSTANT PLS_INTEGER := 12;
direct_logoff_event CONSTANT PLS_INTEGER := 13;

Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are
defined for this package.

CREATE OR REPLACE TYPE DBMS_XS_NSATTR AS OBJECT (
 --- Member variables
 namespace varchar2(130),
 attribute varchar2(4000),
 attribute_value varchar2(4000),

 --- Constructor for DBMS_XS_NSATTR type

Chapter 11
DBMS_XS_SESSIONS Package

11-2

 --- Only namespace name is mandatory
 CONSTRUCTOR FUNCTION DBMS_XS_NSATTR(
 namespace IN VARCHAR2,
 attribute IN VARCHAR2 DEFAULT NULL,
 attribute_value IN VARCHAR2 DEFAULT NULL)
 RETURN SELF AS RESULT);

CREATE OR REPLACE PUBLIC SYNONYM DBMS_XS_NSATTR FOR SYS.DBMS_XS_NSATTR;
CREATE OR REPLACE TYPE DBMS_XS_NSATTRLIST AS VARRAY(1000) OF DBMS_XS_NSATTR;
CREATE OR REPLACE PUBLIC SYNONYM DBMS_XS_NSATTRLIST FOR SYS.DBMS_XS_NSATTRLIST;
GRANT EXECUTE ON DBMS_XS_NSATTR TO PUBLIC;
GRANT EXECUTE ON DBMS_XS_NSATTRLIST TO PUBLIC;
CREATE OR REPLACE PUBLIC SYNONYM DBMS_XS_SESSIONS FOR SYS.DBMS_XS_SESSIONS;
GRANT EXECUTE ON DBMS_XS_SESSIONS TO PUBLIC;

Summary of DBMS_XS_SESSIONS Subprograms

Table 11-2 Summary of DBMS_XS_SESSIONS Subprograms

Subprogram Description

CREATE_SESSION Procedure Creates a new application session for the specified application
user name.

ATTACH_SESSION Procedure Attaches the current traditional database session to the
application session identified by the session ID.

ASSIGN_USER Procedure Assigns a named user to the currently attached anonymous
Real Application Security session.

SWITCH_USER Procedure Switches the application user in the currently attached session.

CREATE_NAMESPACE Procedure Creates a new application namespace in the currently attached
application session.

CREATE_ATTRIBUTE Procedure Creates a new custom attribute for the specified application
namespace in the currently attached application session.

SET_ATTRIBUTE Procedure Sets a new value for the specified attribute in the namespace
in the currently attached application session.

GET_ATTRIBUTE Procedure Gets the value of an attribute in the namespace in the currently
attached application session.

RESET_ATTRIBUTE Procedure Resets an application namespace attribute to its original value
in the specified namespace in the currently attached
application session.

DELETE_ATTRIBUTE Procedure Deletes the specified attribute from the specified namespace in
the currently attached application session.

DELETE_NAMESPACE Procedure Deletes the specified namespace and its attributes from the
currently attached application session.

ENABLE_ROLE Procedure Enables a real application role in the currently attached
application session.

DISABLE_ROLE Procedure Disables a real application role from the currently attached
application session.

SET_SESSION_COOKIE Procedure Sets a new cookie value with the specified session ID.

REAUTH_SESSION Procedure Updates the last authentication time for the session identified
by specified session ID.

SET_INACTIVITY_TIMEOUT Procedure Sets an inactivity timeout value, in minutes, for the specified
session.

Chapter 11
DBMS_XS_SESSIONS Package

11-3

Table 11-2 (Cont.) Summary of DBMS_XS_SESSIONS Subprograms

Subprogram Description

SAVE_SESSION Procedure Saves or persists the changes performed in the currently
attached session.

DETACH_SESSION Procedure Detaches the current traditional database session from the
application session to which it is attached.

DESTROY_SESSION Procedure Destroys or terminates the session specified by the session ID.

ADD_GLOBAL_CALLBACK Procedure Registers an existing event handler with the database.

ENABLE_GLOBAL_CALLBACK Procedure Enables or disables the global callback for the session event
specified by the event_type parameter.

DELETE_GLOBAL_CALLBACK Procedure Deletes an existing global callback association.

This section describes the following DBMS_XS_SESSIONS subprograms:

CREATE_SESSION Procedure
The CREATE_SESSION procedure creates a new application session for the specified
user name. It returns a session identifier that you can use to reference the session in
future calls.

The session can be created with a regular application user or an external application
user. The session can be created in trusted mode or secure mode. In trusted mode,
data security checks are bypassed; in secure mode, they are enforced.

The combination of regular session in trusted mode is not supported. Other
combinations, regular session in secure mode, external session in trusted mode, or
external session in secure mode are supported.

The namespaces parameter is a list of triplet namespaces to be created, the attribute to
be created, and the attribute value to be set. This is an optional parameter. The default
value is NULL. The XS$GLOBAL_VAR and XS$SESSION namespaces and their attributes
are always available to the session.

This function does not attach the current traditional session to the newly created
application session. Use the ATTACH_SESSION Procedure to perform this task.

The user executing the procedure must have the CREATE_SESSION application privilege
for the application user specified by the username parameter. You can also specify a
list of namespaces to be created when the session is created. If you specify
namespaces during creation of the session, the caller is required to be granted
application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
be granted the ADMIN_NAMESPACE system privilege.

Syntax

CREATE_SESSION (
 username IN VARCHAR2,
 sessionid OUT NOCOPY RAW,
 is_external IN BOOLEAN DEFAULT FALSE,
 is_trusted IN BOOLEAN DEFAULT FALSE,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL,
 cookie IN VARCHAR2 DEFAULT NULL);

Chapter 11
DBMS_XS_SESSIONS Package

11-4

Parameters

Parameter Description

username The name of a regular application user or an external application user
for which to create the application session.

To find a listing of the user names and application roles for the current
session, query the DBA_XS_USERS data dictionary view. To find all
application users and roles, query the DBA_XS_PRINCIPALS data
dictionary view as follows:

Users:

SELECT NAME FROM DBA_XS_USERS;

Roles:

SELECT NAME FROM DBA_XS_ROLES;

SELECT NAME FROM DBA_XS_DYNAMIC_ROLES;

sessionid Session ID of the newly created application session. You can get the
session ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID')
FROM DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.

is_external Specifies whether the session is to be created as an external principal
session. This is an optional parameter. The default value is FALSE,
indicating that a regular session is to be created. A NULL value is taken
to mean FALSE.

is_trusted Specifies if the session is to be created in trusted mode or secure
mode. In trusted mode, data security checks are bypassed; in secure
mode, they are enforced. This is an optional parameter. The default
value is FALSE, indicating secure mode. A NULL value is taken to mean
FALSE.

namespaces The list of name, attribute, and attribute value triplet. If the namespace
is not accessible to the session or no such namespace template exists,
an error is thrown.

cookie Specifies the server cookie to be set for the session. This is an optional
parameter. The default value is NULL. The maximum allowed length of
the cookie is 1024 bytes.

Examples

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid, FALSE, FALSE, nsList);
END;

ATTACH_SESSION Procedure
The ATTACH_SESSION procedure attaches the current traditional database session to
the application session identified by the session ID (session_id). The attached

Chapter 11
DBMS_XS_SESSIONS Package

11-5

session enables the roles granted (directly or indirectly) to the application user with
which the session was created and the session scope dynamic application roles that
were enabled until the last detach of this session. If you execute ATTACH_SESSION with
a list of dynamic application roles using the optional parameter
enable_dynamic_roles, the provided dynamic application roles are enabled for the
session. To disable a list of dynamic roles, specify the list using the optional parameter
disable_dynamic_roles.

You can specify a list of triplet values (namespace, attribute, attribute value) during the
attach operation. The namespaces and attributes are then created and attribute values
set. This is in addition to any namespaces and attributes that were present in the
session.

To execute this procedure, the traditional session user must have the ATTACH_SESSION
application privilege. If you specify namespaces, then the user is required to be
granted application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the
namespaces, or ADMIN_NAMESPACE system privilege.

A self password change is allowed using the SQL*Plus PASSWORD command if invoked
from an explicitly attached session (a session attached using the ATTACH_SESSION
procedure or the attachSession() method in Java), provided that session has the
ALTER_USER privilege and the user name is provided with the PASSWORD command.

Syntax

ATTACH_SESSION (
 sessionid IN RAW,
 enable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 disable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 external_roles IN XS$NAME_LIST DEFAULT NULL,
 authentication_time IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL);

Parameters

Parameter Description

sessionid Session ID of the application session. You can get the
session ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION',
'SESSION_ID') FROM DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE
procedure.

enable_dynamic_roles A list of dynamic roles to be granted to be enabled in the
application session. This is an optional parameter. If any of
the dynamic roles specified does not exist, the attach session
fails. If the session is an external principal session, a list of
external roles can be specified for enabling. These roles will
remain enabled until detach and will not be enabled in the
next attach by default.

To find a listing of the application roles for the current
session, query the DBA_XS_SESSION_ROLES data
dictionary view. To find a listing of all dynamic application
roles, query the DBA_XS_PRINCIPALS data dictionary view
as follows:

SELECT NAME, TYPE FROM DBA_XS_PRINCIPALS;

Chapter 11
DBMS_XS_SESSIONS Package

11-6

Parameter Description

disable_dynamic_roles A list of dynamic roles to be disabled from the session. This is
an optional parameter.

external_roles A list of external roles if the session is an external principal
session. This is an optional parameter. These external roles
remain enabled until a detach operation and are not enabled
again in the next attach by default.

authentication_time The updated authentication time for the session. This is an
optional parameter. The time must be specified in the
following format:

YYYY-MM-DD HH:MI:SS.FF TZR

namespaces The list of name, attribute, and attribute value triplet. If the
namespace is not accessible to the session or no such
namespace template exists, an error is thrown.

Examples

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid, NULL, NULL, NULL, NULL, nsList);
END;

ASSIGN_USER Procedure
The ASSIGN_USER procedure assigns a named application user to the currently
attached anonymous application session.

Roles enabled in the current session are retained after this operation. The optional
parameters enable_dynamic_roles and disable_dynamic_roles specify the additional
lists of dynamic roles to be enabled or disabled. If the assigned user is external, you
can specify a list of external roles to be enabled.

You can specify a list of triplet values (namespace, attribute, attribute value) during the
assign operation. The namespaces and attributes are then created in the session and
attribute values set. This is in addition to any namespaces and attributes that were
already present in the session.

To execute this procedure, the dispatcher or connection user must have the
ASSIGN_USER application privilege. If you specify namespaces, then the user is
required to be granted application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE
on the namespaces, or ADMIN_NAMESPACE system privilege.

Syntax

DBMS_XS_SESSIONS.ASSIGN_USER (
 username IN VARCHAR2,
 is_external IN BOOLEAN DEFAULT FALSE,
 enable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 disable_dynamic_roles IN XS$NAME_LIST DEFAULT NULL,
 external_roles IN XS$NAME_LIST DEFAULT NULL,

Chapter 11
DBMS_XS_SESSIONS Package

11-7

 authentication_time IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL);

Parameters

Parameter Description

username The name of the real application user.

To find a listing of existing application users, query the
DBA_XS_PRINCIPALS data dictionary view as follows:

SELECT NAME FROM DBA_XS_PRINCIPALS;

is_external Specifies whether the named application user is an external
user. This is an optional parameter. The default value is
FALSE, indicating that a regular application user is assigned. A
NULL value is taken to mean FALSE.

enable_dynamic_roles A list of dynamic roles to be enabled in an application session.
This is an optional parameter.

To find a listing of the application roles for the current session,
query the V$XS_SESSION_ROLES data dictionary view. To
find a listing of all dynamic application roles, query the
DBA_XS_DYNAMIC_ROLES data dictionary view as follows:

SELECT NAME FROM DBA_XS_DYNAMIC_ROLES;

disable_dynamic_roles A list of dynamic roles to be disabled from the session. This is
an optional parameter.

external_roles A list of external roles if the application user is an external
application user. This is an optional parameter.

authentication_time The updated authentication time for the session. This is an
optional parameter. The time must be specified in the
following format:

YYYY-MM-DD HH:MI:SS.FF TZR

namespaces The list of name, attribute, and attribute value triplet. If the
namespace is not accessible to the session or no such
namespace template exists, an error is thrown.

Examples

DECLARE
 nsList DBMS_XS_NSATTRLIST;
 sessionid RAW(16);
BEGIN
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DB);
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.ASSIGN_USER(username => 'lwuser2',
 namespaces => nsList);
END;

SWITCH_USER Procedure
The SWITCH_USER procedure switches the application user in the currently attached
session. The current application user must be a proxy user for the target application
user before performing the switch operation by using the

Chapter 11
DBMS_XS_SESSIONS Package

11-8

XS_PRINCIPAL.ADD_PROXY_USER PL/SQL API to acquire the proxy of another
application user privilege. The list of filtering application roles of the target user gets
enabled in the session.

You can retain current application namespaces of the session or discard them. You
can also specify a list of namespaces to be created and attribute values to be set after
the switch. If you specify namespaces, then the user is required to be granted
application privileges MODIFY_NAMESPACE or MODIFY_ATTRIBUTE on the namespaces, or
ADMIN_NAMESPACE system privilege.

Syntax

SWITCH_USER (
 username IN VARCHAR2,
 keep_state IN BOOLEAN DEFAULT FALSE,
 namespaces IN DBMS_XS_NSATTRLIST DEFAULT NULL);

Parameters

Parameter Description

username User name of the user whose security context you want to switch to.

To find a listing of existing application users, query the
DBA_XS_USERS data dictionary view as follows:

SELECT NAME FROM DBA_XS_USERS;

keep_state Controls whether application namespaces are retained.

Possible values are:

• TRUE: Sets all other session states to remain unchanged.
• FALSE: Clears the previous state in the session. The default

value.

namespaces The list of name, attribute, and attribute value triplet. If the namespace
is not accessible to the session or no such namespace template
exists, an error is thrown.

Examples

DECLARE
 nsList := DBMS_XS_NSATTRLIST(DBMS_XS_NSATTR('ns1'),DBMS_XS_NSATTR('ns2'));
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.ATTACH_SESSION(sessionid);
 SYS.DBMS_XS_SESSIONS.SWITCH_USER(username => 'lwuser2',
 keep_state => TRUE,
 namespaces => nsList);
END;

CREATE_NAMESPACE Procedure
The CREATE_NAMESPACE procedure creates a new namespace in the currently attached
application session. The namespace template corresponding to the namespace must
exist in the system, else this operation throws an error. After this operation, the
namespace along with its attributes as they are created in the template are available to
the session.

Chapter 11
DBMS_XS_SESSIONS Package

11-9

The calling user must have the MODIFY_NAMESPACE application privilege.

Syntax

CREATE_NAMESPACE(
 namespace IN VARCHAR2);

Parameters

Parameter Description

namespace The name of the namespace to create. There must be an existing namespace
template document with this name. The maximum size of the case sensitive
character string is 128 characters.

To find a listing of existing namespaces for the current session, once
attached, query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view.
You can query the DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to
find out all the namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and
DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary views for a list of
namespace templates and attributes.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_NAMESPACE('J_NS1');
END;

CREATE_ATTRIBUTE Procedure
The CREATE_ATTRIBUTE procedure creates a new custom attribute in the specified
namespace in the currently attached application session. If the namespace is not
already available in the session or no such namespace templates exist, an error is
thrown.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege.

Syntax

PROCEDURE create_attribute(
namespace IN VARCHAR2,
attribute IN VARCHAR2,
value IN VARCHAR2 DEFAULT NULL,
eventreg IN PLS_INTEGER DEFAULT NULL);

Parameters

Parameter Description

namespace The namespace in which the attribute gets created. If the namespace does
not exist in the session, an error is thrown. The maximum size of the case
sensitive character string is 128 characters.

attribute The name of the attribute to be created. The maximum size of the case
sensitive character string is 4000 characters.

value The default value for the attribute. The maximum size of the case sensitive
character string is 4000 characters.

Chapter 11
DBMS_XS_SESSIONS Package

11-10

Parameter Description

eventreg The event for which the handler is executed for the attribute. This is an
optional parameter. This parameter can take the following values:

• DBMS_XS_SESSIONS.attribute_first_read_event

The handler function is called whenever an attribute get request is
received and the value for the attribute has not been set. This event can
be registered only if the default value is set to NULL. This value
corresponds with the FIRSTREAD_EVENT constant in the XS_NAMESPACE
package or Admin API.

• DBMS_XS_SESSIONS.modify_attribute_event:

The handler function is called whenever an attribute set request is
received. This value corresponds with the UPDATE_EVENT constant in the
in the XS_NAMESPACE package or Admin API.

If the attribute is registered for first read event, then the handler is executed if
the attribute is uninitialized, before returning the value. If the update event is
registered, the handler gets called whenever the attribute is modified. Events
can be registered only if the namespace has an event handler, else an error is
thrown.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_ATTRIBUTE('NS1','NS1CUSTOM','NS1CUSTOMDEFAULT');
END;

-- Example with firstRead event set
BEGIN
SYS.DBMS_XS_SESSIONS.create_Attribute('ns1','attr4',NULL,
 DBMS_XS_SESSIONS.attribute_first_read_event);
END;

SET_ATTRIBUTE Procedure
The SET_ATTRIBUTE procedure sets a new value for the specified attribute in the
namespace associated with the currently attached session. The handler function is
called if the update event is set for the attribute. If the namespace does not exist or is
deleted, an error is thrown. If there is no template corresponding to the namespace
that exists, an error is thrown.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege.

Syntax

SET_ATTRIBUTE (
 namespace IN VARCHAR2,
 attribute IN VARCHAR2,
 value IN VARCHAR2);

Chapter 11
DBMS_XS_SESSIONS Package

11-11

Parameters

Parameter Description

namespace Name of the namespace associated with the attribute. The maximum size of
the case sensitive character string is 128 characters.

To find a listing of existing namespaces for the current session, once
attached, query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view.
You can query the DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view
to find out all the namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and
DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary views for a list of
namespace templates and attributes.

attribute Name of an existing attribute in an existing namespace.

To find a listing of existing namespace attributes, query the
V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

value New value for the attribute. The maximum size of the case sensitive
character string is 4000 characters.

To find an listing of existing values associated with the attribute, query the
V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.SET_ATTRIBUTE('J_NS','JohnNSAttr1','John bio');
END;

GET_ATTRIBUTE Procedure
The GET_ATTRIBUTE procedure gets the value of the specified attribute in the
namespace in the currently attached session. If no template corresponding to the
namespace exists, an error is thrown. If the specified attribute does not exist, it returns
empty string.

If the attribute value is NULL, the firstRead event is set, and it is the first time that the
attribute value is being fetched, then the handler function for the attribute is called.

The calling user is not required to be granted any privileges.

Syntax

GET_ATTRIBUTE (
 namespace IN VARCHAR2,
 attribute IN VARCHAR2,
 value OUT NOCOPY VARCHAR2);

Chapter 11
DBMS_XS_SESSIONS Package

11-12

Parameters

Parameter Description

namespace The namespace of the attribute to retrieve. The maximum size of the case
sensitive character string is 128 characters.

To find a listing of existing namespaces for the current session, once attached,
query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can
query the DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out
all the namespaces in all application sessions.

attribute The name of the attribute to retrieve. The maximum size of the case sensitive
character string is 4000 characters. To find a listing of available attributes,
query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

value The value of the attribute to retrieve.

To find a listing of available attribute values, query the
V$XS_SESSION_NS_ATTRIBUTES data dictionary view.

Examples

DECLARE
attrVal VARCHAR2(4000);

BEGIN
 SYS.DBMS_XS_SESSIONS.GET_ATTRIBUTE('J_NS1','JohnNS1Attr1',attrVal);
END;

RESET_ATTRIBUTE Procedure
The RESET_ATTRIBUTE procedure resets the value of an attribute to its default value (if
present) or to NULL in the namespace in the current attached session. If the attribute
has a default value specified, then the value is reset to the default value. If the attribute
was created without a default value and marked for the attribute_first_read_event,
then the value is set to NULL and the attribute is marked as uninitialized. If the attribute
was created without a default value and not marked for the
attribute_first_read_event, then the value is set to NULL.

The calling user is required to be granted the MODIFY_ATTRIBUTE application privilege.

Syntax

PROCEDURE reset_attribute(
namespace IN VARCHAR2,
attribute IN VARCHAR2);

Parameters

Parameter Description

namespace The name of the namespace containing the attribute. The maximum size of
the case sensitive character string is 128 characters.

attribute The name of the attribute to be reset. The maximum size of the case
sensitive character string is 4000 characters.

Chapter 11
DBMS_XS_SESSIONS Package

11-13

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.RESET_ATTRIBUTE('ns2','attr1');
END;

DELETE_ATTRIBUTE Procedure
The DELETE_ATTRIBUTE procedure deletes the specified attribute and its associated
value from the specified namespace in the currently attached session. Only custom
attributes can be deleted. Template attributes cannot be deleted. If the specified
attribute does not exist, an error is thrown.

The calling application is required to be granted the MODIFY_ATTRIBUTE application
privilege.

Syntax

DELETE_ATTRIBUTE (
 namespace IN VARCHAR2,
 attribute IN VARCHAR2);

Parameters

Parameter Description

namespace The namespace associated with the attribute to delete. The maximum size of
the case sensitive character string is 128 characters.

To find a listing of existing namespaces for the current session, once attached,
query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can
query the DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out
all the namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and
DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary views for a list of
namespace templates and attributes.

attribute The attribute to delete.

To find a listing of existing namespaces for the current session, once attached,
query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can
query the DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out
all the namespaces in all application sessions.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DELETE_ATTRIBUTE('JohnNS1','JohnNS1Attr1');
END;

DELETE_NAMESPACE Procedure
The DELETE_NAMESPACE procedure deletes a namespace and its attributes from the
currently attached application session.

The calling user must have the MODIFY_NAMESPACE application privilege.

Chapter 11
DBMS_XS_SESSIONS Package

11-14

Syntax

DELETE_NAMESPACE (
 namespace IN VARCHAR2);

Parameters

Parameter Description

namespace The name of the namespace to delete. The maximum size of the case
sensitive character string is 128 characters.

To find a listing of existing namespaces for the current session, once attached,
query the V$XS_SESSION_NS_ATTRIBUTES data dictionary view. You can
query the DBA_XS_SESSION_NS_ATTRIBUTES data dictionary view to find out
all the namespaces in all application sessions.

You can query the DBA_XS_NS_TEMPLATES and
DBA_XS_NS_TEMPLATE_ATTRIBUTES data dictionary views for a list of
namespace templates and attributes.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DELETE_NAMESPACE('JohnNS1');
END;

ENABLE_ROLE Procedure
The ENABLE_ROLE procedure enables a real application role in the currently attached
application session. If the role is already enabled, then ENABLE_ROLE procedure
performs no action. This procedure can only enable a regular application role directly
granted to the current application user. You cannot enable dynamic application roles.

This operation does not require the calling user to have any additional privilege.

Syntax

ENABLE_ROLE (
 role IN VARCHAR2);

Parameters

Parameter Description

role The name of the role to enable. The maximum size of the case sensitive
character string is 128 characters.

To find a listing of the application roles for the current session, query the
V$XS_SESSION_ROLES data dictionary view. To find all application roles,
query the DBA_XS_SESSION_ROLES data dictionary view as follows:

SELECT ROLE_NAME FROM V$XS_SESSION_ROLES;

SELECT SESSIONID, ROLE FROM DBA_XS_SESSION_ROLES;

Chapter 11
DBMS_XS_SESSIONS Package

11-15

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.ENABLE_ROLE('auth2_role');
END;

DISABLE_ROLE Procedure
The DISABLE_ROLE procedure disables a real application role from the specified
application session. If the role is already disabled or not enabled in the currently
attached application session, then DISABLE_ROLE performs no action. You cannot
disable dynamic application roles. You can only disable a regular application role,
which is directly granted to the application user with which the session is created.

This operation does not require the calling user to have any additional privilege.

Syntax

DISABLE_ROLE (
 role IN VARCHAR2);

Parameters

Parameter Description

role The name of the role to disable. The maximum size of the case sensitive
character string is 128 characters.

To find a listing of the application roles for the current session, query the
V$XS_SESSION_ROLES data dictionary view. To find all application roles,
query the DBA_XS_SESSION_ROLES data dictionary view as follows:

SELECT ROLE_NAME FROM V$XS_SESSION_ROLES;

SELECT SESSIONID, ROLE FROM DBA_XS_SESSION_ROLES;

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DISABLE_ROLE('auth1_role');
END;

SET_SESSION_COOKIE Procedure
The SET_SESSION_COOKIE procedure sets a new cookie value with the specified
session ID. If the specified session does not exist or the cookie name is not unique
among all the user application sessions, then an error is thrown.

To execute this procedure, the user is required to be granted the MODIFY_SESSION
application privilege.

Syntax

SET_SESSION_COOKIE (
 cookie IN VARCHAR2,
 sessionid IN RAW DEFAULT NULL);

Chapter 11
DBMS_XS_SESSIONS Package

11-16

Parameters

Parameter Description

cookie A name for the new cookie. The maximum allowed length for the cookie is
1024 characters. Cookie names must be unique.

To find a listing of existing cookies for the current session, query
XS_SYS_CONTEXT(XS$SESSION','COOKIE').

sessionid Session ID of the application session. The default value is NULL. You can get
the session ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM
DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.
If you do not specify a session ID or enter NULL, then SET_SESSION_COOKIE
uses the session ID of the current application session.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.SET_SESSION_COOKIE('cookie1', sessionid);
END;

REAUTH_SESSION Procedure
The REAUTH_SESSION procedure updates the last authentication time for the specified
session ID as the current time. Applications must call this procedure when it has
reauthenticated an application user.

Use the REAUTH_SESSION procedure to enable a role that has timed out because of a
lack of recent authentication in the application or middle-tier server. You can also call
the reauthSession Java method.

To execute this function, the user is required to be granted the MODIFY_SESSION
application privilege.

Syntax

REAUTH_SESSION (
 sessionid IN RAW DEFAULT NULL);

Chapter 11
DBMS_XS_SESSIONS Package

11-17

Parameters

Parameter Description

sessionid Session ID of the application session. This parameter is optional. The default
value is NULL. You can get the session ID by using one of the following
methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM
DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.
If you do not specify a session ID or enter NULL, then REAUTH_SESSION uses
the session ID of the current application session.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.REAUTH_SESSION(sessionid);
END;

SET_INACTIVITY_TIMEOUT Procedure
The SET_INACTIVITY_TIMEOUT procedure sets an inactivity time-out value, in minutes,
for the current attached session. The inactivity time-out value represents the maximum
period of inactivity allowed before Oracle Database terminates the application session
and the resource is reclaimed. Trying to set a negative value for the time parameter
throws an error. If an invalid session ID is specified or the session does not exist, an
error is thrown.

Another way to set the time-out value is to use the setInactivityTimeout Java
method. You can set a default global time-out value in the xmlconfig.xml
configuration file. Oracle recommends 240 (4 hours).

An application session cannot time-out due to inactivity while a traditional session is
attached. The last access time is updated each time a traditional session attaches to
the application session.

To execute this procedure, the calling user is required to be granted the
MODIFY_SESSION application privilege.

Syntax

SET_INACTIVITY_TIMEOUT (
 time IN NUMBER,
 sessionid IN RAW DEFAULT NULL);

Parameters

Parameter Description

time Inactivity time-out value in minutes. Oracle recommends setting the time
parameter to 240 (4 hours). A zero (0) value means the value is infinite and
that the session never expires due to inactivity.

Chapter 11
DBMS_XS_SESSIONS Package

11-18

Parameter Description

sessionid Session ID of the application session. The default value is NULL. You can get
the session ID by using one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM
DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.
If you do not specify a session ID or enter NULL, then
SET_INACTIVITY_TIMEOUT uses the session ID of the current application
session.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwuser1', sessionid);
 SYS.DBMS_XS_SESSIONS.SET_INACTIVITY_TIMEOUT (300, sessionid);
END;
/

SAVE_SESSION Procedure
The SAVE_SESSION procedure saves all changes performed in the currently attached
session and remains attached to the session as it was before saving changes.

The calling user requires no privileges to perform this operation.

Syntax

SAVE_SESSION;

Parameters

None.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.SAVE_SESSION;
END;

DETACH_SESSION Procedure
The DETACH_SESSION procedure detaches the current traditional database session from
the application session to which it is attached. The database sessions goes back to
the context it was in prior to attaching to the application session. Any user can execute
this procedure as the operation does not require any privileges to execute.

Syntax

DETACH_SESSION (abort IN BOOLEAN DEFAULT FALSE);

Chapter 11
DBMS_XS_SESSIONS Package

11-19

Parameters

Parameter Description

abort If specified as TRUE, it rolls back the changes performed in the current
session. If specified as FALSE, the default value, all changes performed in the
session are persisted. If a NULL value is specified for this parameter, it is
treated as FALSE.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DETACH_SESSION;
END;

DESTROY_SESSION Procedure
The DESTROY_SESSION procedure destroys the specified session. This procedure also
implicitly detaches all traditional sessions from the application session. After the
session is destroyed no further attaches can be made to the session. This operation
cannot destroy sessions created through direct logon of the application user.

To execute this procedure, the user must have the TERMINATE_SESSION application
privilege.

Syntax

DESTROY_SESSION (
 sessionid IN RAW,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Parameter Description

sessionid Session ID of the application session. You can get the session ID by using
one of the following methods:

• SELECT XS_SYS_CONTEXT('XS$SESSION', 'SESSION_ID') FROM
DUAL;

• Using the DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure.
If you do not specify a session ID or enter NULL, then DESTROY_SESSION
uses the session ID of the current application session.

force If set to FALSE, this operation throws an error, in case the specified session is
currently attached. If set to TRUE, the currently attached application session
can be destroyed. This is an optional parameter.

Examples

DECLARE
 sessionid RAW(16);
BEGIN
 SYS.DBMS_XS_SESSIONS.CREATE_SESSION('lwtSession1', sessionid);
 SYS.DBMS_XS_SESSIONS.DESTROY_SESSION (sessionid);
END;

Chapter 11
DBMS_XS_SESSIONS Package

11-20

ADD_GLOBAL_CALLBACK Procedure
The ADD_GLOBAL_CALLBACK procedure registers an existing PL/SQL procedure as the
event handler with the session operation specified by the event_type parameter. You
can add more than one event handler for the same session operation for execution
when the associated event occurs. Adding the global callback procedure automatically
enables the callback procedure for execution. If more than one callback is added for
the same session event, they are executed in according to their registration sequence,
that is, the callback procedure that was registered first, is executed first. This
procedure throws an error if an invalid event type is specified or the callback
procedure does not exist.

Successful execution of this procedure requires the CALLBACK application privilege.
This role can be obtained through PROVISIONER database role.

Syntax

ADD_GLOBAL_CALLBACK(
 event_type IN PLS_INTEGER,
 callback_schema IN VARCHAR2,
 callback_package IN VARCHAR2,
 callback_procedure IN VARCHAR2);

Parameters

Parameter Description

event_type Select from the following event types:

• CREATE_SESSION_EVENT
• ATTACH_SESSION_EVENT
• CREATE_NAMESPACE_EVENT
• GUEST_TO_USER_EVENT
• PROXY_TO_USER_EVENT
• REVERT_TO_USER_EVENT
• ENABLE_ROLE_EVENT
• DISABLE_ROLE_EVENT
• ENABLE_DYNAMIC_ROLE_EVENT
• DISABLE_DYNAMIC_ROLE_EVENT
• DETACH_SESSION_EVENT
• TERMINATE_SESSION_EVENT
• DIRECT_LOGIN_EVENT

callback_schema Enter the name of the schema in which the callback
procedure was created.

callback_package Enter the name of the package in which the callback
procedure was created. If callback procedure is standalone,
NULL should be passed as callback_package parameter.
This parameter is optional only if the callback procedure is in
a package.

callback_procedure Enter the name of the procedure that defines the global
callback.

Chapter 11
DBMS_XS_SESSIONS Package

11-21

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK (
 DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,
 'APPS1_SCHEMA','APPS2_PKG','CREATE_SESSION_CB');
END;

ENABLE_GLOBAL_CALLBACK Procedure
The ENABLE_GLOBAL_CALLBACK procedure enables or disables the global callback
procedure for execution. If a callback procedure associated with this event is not
specified, all callback procedures associated with this global callback are enabled or
disabled. If an invalid event type is specified or invalid callback procedure is specified,
an error is thrown.

Syntax

ENABLE_GLOBAL_CALLBACK(
 event_type IN PLS_INTEGER,
 enable IN BOOLEAN DEFAULT TRUE,
 callback_schema IN VARCHAR2 DEFAULT NULL,
 callback_package IN VARCHAR2 DEFAULT NULL,
 callback_procedure IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

event_type Select from the following event types:

• CREATE_SESSION_EVENT
• ATTACH_SESSION_EVENT
• CREATE_NAMESPACE_EVENT
• GUEST_TO_USER_EVENT
• PROXY_TO_USER_EVENT
• REVERT_TO_USER_EVENT
• ENABLE_ROLE_EVENT
• DISABLE_ROLE_EVENT
• ENABLE_DYNAMIC_ROLE_EVENT
• DISABLE_DYNAMIC_ROLE_EVENT
• DETACH_SESSION_EVENT
• TERMINATE_SESSION_EVENT
• DIRECT_LOGIN_EVENT

enable Specifies whether the global callback is to be enabled or
disabled. The default value is TRUE, meaning enable.

callback_schema Enter the name of the schema in which the global callback
was created.

callback_package Enter the name of the package in which the global callback
was created.

callback_procedure Enter the name of the procedure that defines the global
callback.

Chapter 11
DBMS_XS_SESSIONS Package

11-22

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.ENABLE_GLOBAL_CALLBACK (
 DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,
 TRUE, 'APPS1_SCHEMA','APPS2_PKG','CREATE_SESSION_CB');
END;

DELETE_GLOBAL_CALLBACK Procedure
The DELETE_GLOBAL_CALLBACK procedure removes the global callback from
registration. (It does not delete the global callback itself.) If a callback procedure is not
specified, all callback procedures associated with this global callback are deleted. If an
invalid event type is specified, an error is thrown.

Syntax

DELETE_GLOBAL_CALLBACK(
 event_type IN PLS_INTEGER,
 callback_schema IN VARCHAR2 DEFAULT NULL,
 callback_package IN VARCHAR2 DEFAULT NULL,
 callback_procedure IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

event_type Select from the following event types:

• CREATE_SESSION_EVENT
• ATTACH_SESSION_EVENT
• CREATE_NAMESPACE_EVENT
• GUEST_TO_USER_EVENT
• PROXY_TO_USER_EVENT
• REVERT_TO_USER_EVENT
• ENABLE_ROLE_EVENT
• DISABLE_ROLE_EVENT
• ENABLE_DYNAMIC_ROLE_EVENT
• DISABLE_DYNAMIC_ROLE_EVENT
• DETACH_SESSION_EVENT
• TERMINATE_SESSION_EVENT
• DIRECT_LOGIN_EVENT

callback_schema Enter the name of the schema in which the global callback
was created.

callback_package Enter the name of the package in which the global callback
was created.

callback_procedure Enter the name of the procedure that defines the global
callback.

Examples

BEGIN
 SYS.DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK (
 DBMS_XS_SESSIONS.CREATE_SESSION_EVENT,

Chapter 11
DBMS_XS_SESSIONS Package

11-23

 'APPS1_SCHEMA','APPS2_PKG','CREATE_SESSION_CB');
END;

XS_ACL Package
The XS_ACL package creates procedures to create and manage Access Control Lists
(ACLs).

This section includes the following topics:

• Security Model for the XS_ACL Package

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_ACL Subprograms

Security Model for the XS_ACL Package
The XS_ACL package is created under the SYS schema.

The DBA role is granted the ADMIN_ANY_SEC_POLICY privilege, which allows it to
administer schema objects like ACLs, security classes, and security policies across all
schemas.

Users can administer schema objects in their own schema if they have been granted
the RESOURCE role for the schema. The RESOURCE role and the XS_RESOURCE application
role include the ADMIN_SEC_POLICY privilege, required to administer schema objects in
the schema as well as administering the policy artifacts within the granted schema to
achieve policy management within an application.

Users can administer policy enforcement on the schema if they have been granted the
APPLY_SEC_POLICY privilege. With this privilege, the user can administer policy
enforcement within granted schemas to achieve policy management within an
application.

Constants
The following constants define the parent ACL type:

EXTENDED CONSTANT PLS_INTEGER := 1;
CONSTRAINED CONSTANT PLS_INTEGER := 2;

The following constants define the principal's type:

PTYPE_XS CONSTANT PLS_INTEGER := 1;
PTYPE_DB CONSTANT PLS_INTEGER := 2;
PTYPE_DN CONSTANT PLS_INTEGER := 3;
PTYPE_EXTERNAL CONSTANT PLS_INTEGER := 4;

The following constants define the parameter's value type:

TYPE_NUMBER CONSTANT PLS_INTEGER := 1;
TYPE_VARCHAR CONSTANT PLS_INTEGER := 2;

Chapter 11
XS_ACL Package

11-24

Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are
defined for this package.

-- Type definition for ACE
CREATE OR REPLACE TYPE XS$ACE_TYPE AS OBJECT (

-- Member Variables
 privilege_list XS$NAME_LIST,
 is_grant_ace NUMBER,
 is_invert_principal NUMBER,
 principal_name VARCHAR2(130),
 principal_type NUMBER,
 start_date TIMESTAMP WITH TIME ZONE,
 end_date TIMESTAMP WITH TIME ZONE,

 CONSTRUCTOR FUNCTION XS$ACE_TYPE (
 privilege_list IN XS$NAME_LIST,
 granted IN BOOLEAN := TRUE,
 inverted IN BOOLEAN := FALSE,
 principal_name IN VARCHAR2,
 principal_type IN PLS_INTEGER := 1,
 start_date IN TIMESTAMP WITH TIME ZONE := NULL,
 end_date IN TIMESTAMP WITH TIME ZONE := NULL)
 RETURN SELF AS RESULT,

 MEMBER PROCEDURE set_privileges(privilege_list IN XS$NAME_LIST),
 MEMBER FUNCTION get_privileges RETURN XS$NAME_LIST,
 MEMBER PROCEDURE set_grant(granted IN BOOLEAN),
 MEMBER FUNCTION is_granted RETURN BOOLEAN,
 MEMBER PROCEDURE set_inverted_principal(inverted IN BOOLEAN),
 MEMBER FUNCTION is_inverted_principal RETURN BOOLEAN,
 MEMBER PROCEDURE set_principal(principal_name IN VARCHAR2),
 MEMBER FUNCTION get_principal RETURN VARCHAR2,
 MEMBER PROCEDURE set_principal_type (principal_type IN PLS_INTEGER),
 MEMBER FUNCTION get_principal_type RETURN PLS_INTEGER,
 MEMBER PROCEDURE set_start_date(start_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_start_date RETURN TIMESTAMP WITH TIME ZONE,
 MEMBER PROCEDURE set_end_date(end_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_end_date RETURN TIMESTAMP WITH TIME ZONE
);
CREATE OR REPLACE TYPE XS$ACE_LIST AS VARRAY(1000) OF XS$ACE_TYPE;

Summary of XS_ACL Subprograms

Table 11-3 Summary of XS_ACL Subprograms

Subprogram Description

CREATE_ACL Procedure Creates an Access Control List (ACL).

APPEND_ACES Procedure Adds one or more Access Control Entries (ACEs) to an
existing ACL.

REMOVE_ACES Procedure Removes all ACEs from an ACL.

SET_SECURITY_CLASS Procedure Sets or modifies the security class for an ACL.

Chapter 11
XS_ACL Package

11-25

Table 11-3 (Cont.) Summary of XS_ACL Subprograms

Subprogram Description

SET_PARENT_ACL Procedure Sets or modifies the parent ACL for an ACL.

ADD_ACL_PARAMETER Procedure Adds an ACL parameter value for a data security policy.

REMOVE_ACL_PARAMETERS
Procedure

Removes ACL parameters and values for an ACL.

SET_DESCRIPTION Procedure Sets a description string for an ACL.

DELETE_ACL Procedure Deletes the specified ACL.

This section describes the following XS_ACL subprograms:

CREATE_ACL Procedure
The CREATE_ACL procedure creates a new Access Control List (ACL).

Syntax

XS_ACL.CREATE_ACL (name IN VARCHAR2,
 ace_list IN XS$ACE_LIST,
 sec_class IN VARCHAR2 := NULL,
 parent IN VARCHAR2 := NULL,
 inherit_mode IN PLS_INTEGER := NULL,
 description IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the ACL to be created.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to SCOTT.ACL1.

ace_list The list of Access Control Entries (ACEs) in the ACL.

sec_class The name of the security class that specifies the scope or type of the
ACL. If no security class is specified, then the DML class is used as the
default security class.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to SCOTT.ACL1.

parent The parent ACL name, if any.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to SCOTT.ACL1.

inherit_mode The inheritance mode if a parent ACL is specified. The allowed values
are: EXTENDED or CONSTRAINED.

description An optional description for the ACL.

Chapter 11
XS_ACL Package

11-26

Examples

The following example creates an ACL called HRACL. This ACL includes ACEs
contained in ace_list. The privileges used in ace_list are part of the HRPRIVS
security class.

DECLARE
 ace_list XS$ACE_LIST;
BEGIN
 ace_list := XS$ACE_LIST(
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"','VIEW_SENSITIVE_INFO'),
 granted=>true,
 principal_name=>'HRREP'),
 XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('UPDATE_INFO'),
 granted=>true,
 principal_name=>'HRMGR'));
 SYS.XS_ACL.CREATE_ACL(name=>'HRACL',
 ace_list=>ace_list,
 sec_class=>'HRPRIVS',
 description=>'HR Representative Access');
END;

APPEND_ACES Procedure
The APPEND_ACES procedure adds one or more ACE to an existing ACL.

Syntax

XS_ACL.APPEND_ACES (
 acl IN VARCHAR2,
 ace IN XS$ACE_TYPE);

XS.ACL.APPEND_ACES (
 acl IN VARCHAR2,
 ace_list IN XS$ACE_LIST);

Parameters

Parameter Description

acl The name of the ACL to which the ACE is to be added.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

ace The ACE to be added to the ACL.

ace_list The list of ACEs to be added to the ACL.

Examples

The following example adds an ACE to the HRACL ACL. The ACE grants the SELECT
privilege to the DB_HR database user.

DECLARE
 ace_entry XS$ACE_TYPE;
BEGIN
 ace_entry := XS$ACE_TYPE(privilege_list=>XS$NAME_LIST('"SELECT"'),

Chapter 11
XS_ACL Package

11-27

 granted=>true,
 principal_name=>'DB_HR',
 principal_type=>XS_ACL.PTYPE_DB);
 SYS.XS_ACL.APPEND_ACES('HRACL',ace_entry);
END;

REMOVE_ACES Procedure
The REMOVE_ACES procedure removes all ACEs from an ACL.

Syntax

XS_ACL.REMOVE_ACES (
 acl IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL from which the ACEs are to be removed.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

Examples

The following example removes all ACEs from the ACL called HRACL:

BEGIN
 SYS.XS_ACL.REMOVE_ACES('HRACL');
END;

SET_SECURITY_CLASS Procedure
The SET_SECURITY_CLASS procedure sets or modifies the security class for an ACL.

Syntax

XS_ACL.SET_SECURITY_CLASS (
 acl IN VARCHAR2,
 sec_class IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL for which the security class is to be set.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to
SCOTT.ACL1.

Chapter 11
XS_ACL Package

11-28

Parameter Description

sec_class The name of the security class that defines the ACL scope or type.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to
SCOTT.ACL1.

Examples

The following example associates the HRPRIVS security class with the HRACL ACL:

BEGIN
 SYS.XS_ACL.SET_SECURITY_CLASS('HRACL','HRPRIVS');
END;

SET_PARENT_ACL Procedure
The SET_PARENT_ACL sets or modifies the parent ACL for an ACL.

Syntax

XS_ACL.SET_PARENT_ACL(
 acl IN VARCHAR2,
 parent IN VARCHAR2,
 inherit_mode IN PLS_INTEGER);

Parameters

Parameter Description

acl The name of the ACL whose parent needs to be set.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to SCOTT.ACL1.

parent The name of the parent ACL.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to SCOTT.ACL1.

inherit_mode The inheritance mode. This can be one of the following values:

EXTENDED (extends from), CONSTRAINED (constrained with)

Examples

The following example sets the AllDepACL ACL as the parent ACL for the HRACL ACL.
The inheritance type is set to EXTENDED.

BEGIN
 SYS.XS_ACL.SET_PARENT_ACL('HRACL','AllDepACL',XS_ACL.EXTENDED);
END;

Chapter 11
XS_ACL Package

11-29

ADD_ACL_PARAMETER Procedure
The ADD_ACL_PARAMETER adds an ACL parameter value for a data security policy.

Syntax

XS_ACL.ADD_ACL_PARAMETER (
 acl IN VARCHAR2,
 policy IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN NUMBER);

XS_ACL.ADD_ACL_PARAMETER (
 acl IN VARCHAR2,
 policy IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL to which the parameter is to be added.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

policy The name of the data security policy for which the ACL parameter has been
created.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

parameter The name of the ACL parameter as defined by the data security policy.

value The value of the ACL parameter to be used.

Examples

The following example adds the REGION parameter for ACL1. The name of the data
security policy for which the ACL parameter is created is TEST_DS. The value of the
REGION parameter is WEST.

BEGIN
 SYS.XS_ACL.ADD_ACL_PARAMETER('ACL1','TEST_DS','REGION', 'WEST');
END;

REMOVE_ACL_PARAMETERS Procedure
The REMOVE_ACL_PARAMETERS removes the specified ACL parameter for an ACL. If no
parameter name is specified, then all ACL parameters for the ACL are removed.

Syntax

XS_ACL.REMOVE_ACL_PARAMETERS (
 acl IN VARCHAR2,

Chapter 11
XS_ACL Package

11-30

 parameter IN VARCHAR2);

XS_ACL.REMOVE_ACL_PARAMETERS (
 acl IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL from which the parameter(s) are to be removed.

The name is schema qualified, for example, SCOTT.ACL1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as ACL1, and the
current schema is SCOTT, it would resolve to SCOTT.ACL1.

parameter The name of the parameter that needs to be removed from the ACL.

Examples

The following example removes the REGION parameter from the ACL1 ACL:

BEGIN
 XS_ACL.REMOVE_ACL_PARAMETERS('ACL1', 'REGION');
END;

The following example removes all ACL parameters for ACL1.

BEGIN
 SYS.XS_ACL.REMOVE_ACL_PARAMETERS('ACL1');
END;

SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure sets a description string for an ACL.

Syntax

XS_ACL.SET_DESCRIPTION (
 acl IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Parameter Description

acl The name of the ACL for which the description is to be set.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
ACL1, and the current schema is SCOTT, it would resolve to SCOTT.ACL1.

description A string description for the ACL.

Examples

The following example sets a description for the HRACL ACL:

BEGIN
 SYS.XS_ACL.SET_DESCRIPTION('HRACL','Grants privileges to HR representatives and

Chapter 11
XS_ACL Package

11-31

 managers.');
END;

DELETE_ACL Procedure
The DELETE_ACL procedure deletes the specified ACL.

Syntax

XS_ACL.DELETE_ACL (
 acl IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

acl The name of the ACL to be deleted.

The name is schema qualified, for example, SCOTT.ACL1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified
as ACL1, and the current schema is SCOTT, it would resolve to
SCOTT.ACL1.

delete_option The delete option to use. To the data security policy, the behavior of
the following options is the same:

• DEFAULT_OPTION:

The default option allows deleting an ACL only if it is not
referenced elsewhere. If the ACL is referenced elsewhere, then
the ACL cannot be deleted.

For example, the delete operation fails if you try to delete an ACL
that is part of a data security policy.

• CASCADE_OPTION:

The cascade option deletes the ACL and also removes the ACL
reference in a data realm constraint of a data security policy.

• ALLOW_INCONSISTENCIES_OPTION:

The allow inconsistencies option lets you delete the ACL even if
other entities have late binding references to it. In this mode, the
ACL will be removed but the references are not removed.

Examples

The following example deletes the HRACL ACL using the default delete option:

BEGIN
 SYS.XS_ACL.DELETE_ACL('HRACL');
END;

XS_ADMIN_UTIL Package
The XS_ADMIN_UTIL package contains helper subprograms to be used by other
packages.

This section includes the following topics:

• Security Model

Chapter 11
XS_ADMIN_UTIL Package

11-32

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_ADMIN_UTIL Subprograms

Security Model
The XS_ADMIN_UTIL package is created in the SYS schema. The caller has invoker's
rights on this package. The SYS privilege is required to grant or revoke a Real
Application Security system privilege to or from a user or role.

Constants
The following constants define the delete options:

DEFAULT_OPTION CONSTANT PLS_INTEGER := 1;
CASCADE_OPTION CONSTANT PLS_INTEGER := 2;
ALLOW_INCONSISTENCIES_OPTION CONSTANT PLS_INTEGER := 3;

The following constants define the principal's type:

PTYPE_XS CONSTANT PLS_INTEGER := 1;
PTYPE_DB CONSTANT PLS_INTEGER := 2;
PTYPE_DN CONSTANT PLS_INTEGER := 3;
PTYPE_EXTERNAL CONSTANT PLS_INTEGER := 4;

Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are
defined for this package.

CREATE OR REPLACE TYPE XS$LIST IS VARRAY(1000) OF VARCHAR2(4000);
CREATE OR REPLACE TYPE XS$NAME_LIST IS VARRAY(1000) OF VARCHAR2(261);

Summary of XS_ADMIN_UTIL Subprograms

Table 11-4 Summary of XS_ADMIN_UTIL Subprograms

Subprogram Brief Description

GRANT_SYSTEM_PRIVILEGE
Procedure

Grant a Real Application Security system privilege to a
user or role.

REVOKE_SYSTEM_PRIVILEGE
Procedure

Revoke a Real Application Security system privilege from
a user or role.

This section describes the following XS_ADMIN_UTIL subprograms:

GRANT_SYSTEM_PRIVILEGE Procedure
The GRANT_SYSTEM_PRIVILEGE procedure is used to grant a Real Application Security
system privilege or schema privilege to a user or role. Only SYS or a user who has
GRANT ANY PRIVILEGE privilege can perform this operation.

Chapter 11
XS_ADMIN_UTIL Package

11-33

The audit action AUDIT_GRANT_PRIVILEGE, audits all GRANT_SYSTEM_PRIVILEGE calls for
granting system privileges or schema privileges.

Syntax

XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,
 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

Parameters

Parameter Description

priv_name Specifies the name of the Real Application Security system privilege or
schema privilege to be granted.

user_name Specifies the name of the user or role to which the Real Application
Security system privilege or schema privilege is to be granted.

user_type The type of user. By default the database user.

schema The schema on which the privilege is granted. The value is NULL if the
privilege is a system privilege.

Examples

The following example creates a database user, dbuser1, and grants Real Application
Security privilege ADMINISTER_SESSION to this database user and specifies the
user_type as XS_ADMIN_UTIL.PTYPE_DB, though by default, this is the default value
and need not be specified.

SQL> CREATE USER dbuser1 identified by password;

SQL> EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMINISTER_SESSION', 'dbuser1',
XS_ADMIN_UTIL.PTYPE_DB, 'HR1');

The following example creates an application user, user1, and grants Real Application
Security privilege ADMINISTER_SESSION to this application user, specifies the
user_type as XS_ADMIN_UTIL.PTYPE_XS, and specifies the schema as HR1.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('user1','HR1');

SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('user1', 'password');

SQL> EXEC SYS.XS_ADMIN_UTIL.GRANT_SYSTEM_PRIVILEGE('ADMINISTER_SESSION', 'user1',
XS_ADMIN_UTIL.PTYPE_XS, 'HR1');

REVOKE_SYSTEM_PRIVILEGE Procedure
The REVOKE_SYSTEM_PRIVILEGE is used to revoke a Real Application Security ststem
privilege or schema privilege from a user or role. Only SYS privilege or a user with
GRANT ANY PRIVILEGE privilege can perform this operation.

The audit action AUDIT_REVOKE_PRIVILEGE, audits all REVOKE_SYSTEM_PRIVILEGE calls
for revoking system privileges or schema privileges.

Chapter 11
XS_ADMIN_UTIL Package

11-34

Syntax

XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE (
 priv_name IN VARCHAR2,
 user_name IN VARCHAR2,
 user_type IN PLS_INTEGER := XS_ADMIN_UTIL.PTYPE_DB,
 schema IN VARCHAR2);

Parameters

Parameter Description

priv_name Specifies the name of the Real Application Security system privilege or
schema privilege to be revoked.

user_name Specifies the name of the user or role from which the Real Application
Security system privilege or schema privilege is to be revoked.

user_type The type of user. By default the database user.

schema The schema on which the privilege is revoked. The value is NULL if the
privilege is a system privilege.

Examples

The following example creates a database user, dbuser1, and revokes Real
Application Security privilege ADMINISTER_SESSION from this database user and
specifies the user_type as XS_ADMIN_UTIL.PTYPE_DB, though by default, this is the
default value and need not be specified.

CREATE USER dbuser1 identified by password;

SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMINISTER_SESSION','dbuser1',
XS_ADMIN_UTIL.PTYPE_DB, 'HR1');

The following example creates an application user, user1, and revokes Real
Application Security privilege ADMINISTER_SESSION from this application user and
specifies the user_type as XS_ADMIN_UTIL.PTYPE_XS.

SQL> EXEC SYS.XS_PRINCIPAL.CREATE_USER('user1','HR1');

SQL> EXEC SYS.XS_PRINCIPAL.SET_PASSWORD('user1', 'password');

SQL> EXEC SYS.XS_ADMIN_UTIL.REVOKE_SYSTEM_PRIVILEGE('ADMINISTER_SESSION','user1',
XS_ADMIN_UTIL.PTYPE_XS, 'HR1');

XS_DATA_SECURITY Package
The XS_DATA_SECURITY package includes procedures to create, manage, and delete
data security policies, associated data realm constraints, column constraints, and ACL
parameters.

This section includes the following topics:

• Security Model

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_DATA_SECURITY Subprograms

Chapter 11
XS_DATA_SECURITY Package

11-35

Security Model for the XS_DATA_SECURITY Package
The XS_DATA_SECURITY package is created under the SYS schema. The DBA role is
granted the ADMIN_ANY_SEC_POLICY, which allows it to administer schema objects like
ACLs, security classes, and security policies across all schemas. In addition, users
granted the ADMIN_ANY_SEC_POLICY can call the following procedures:
ENABLE_OBJECT_POLICY, DISABLE_OBJECT_POLICY, APPLY_OBJECT_POLICY, and
REMOVE_OBJECT_POLICY.

Users can administer schema objects in their own schema if they have been granted
the RESOURCE role for the schema. The RESOURCE role and the XS_RESOURCE application
role include the ADMIN_SEC_POLICY privilege, required to administer schema objects in
the schema as well as administering the policy artifacts within the granted schema to
achieve policy management within an application.

Users can administer policy enforcement on the schema if they have been granted the
APPLY_SEC_POLICY privilege. With this privilege, the user can administer policy
enforcement within granted schemas to achieve policy management within an
application.

Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are
defined for this package.

-- Create a type for key
CREATE OR REPLACE TYPE XS$KEY_TYPE AS OBJECT (
primary_key VARCHAR2(130),
foreign_key VARCHAR2(4000),
-- Foreign key type; 1 = col name, 2 = col value
foreign_key_type NUMBER,
-- Constructor function
CONSTRUCTOR FUNCTION XS$KEY_TYPE
 (primary_key IN VARCHAR2,
 foreign_key IN VARCHAR2,
 foreign_key_type IN NUMBER)
 RETURN SELF AS RESULT,

MEMBER FUNCTION GET_PRIMARY_KEY RETURN VARCHAR2,
MEMBER FUNCTION GET_FOREIGN_KEY RETURN VARCHAR2,
MEMBER FUNCTION GET_FOREIGN_KEY_TYPE RETURN NUMBER,
);
CREATE OR REPLACE TYPE XS$KEY_LIST AS VARRAY(1000) OF XS$KEY_TYPE;
CREATE OR REPLACE TYPE XS$REALM_CONSTRAINT_TYPE AS OBJECT (
-- Member variables
realm_type NUMBER,
-- Member evaluation rule
realm VARCHAR2(4000),
-- acl list of instance set
acl_list XS$NAME_LIST,
-- isStatic variable for instance set. Stored as INTEGER. No boolean datatype
-- for objects. False is stored as 0 and TRUE is stored as 1
is_static INTEGER,
-- Indicate if the realm is parameterized.
parameterized INTEGER,
-- parent schema name for inherited from
parent_schema VARCHAR2(130),

Chapter 11
XS_DATA_SECURITY Package

11-36

-- parent object name for inherited from
parent_object VARCHAR2(130),
-- keys for inherited from
key_list XS$KEY_LIST,
-- when condition for inherited from
when_condition VARCHAR2(4000),

-- Constructor function - row_level realm
CONSTRUCTOR FUNCTION XS$REALM_CONSTRAINT_TYPE
 (realm IN VARCHAR2,
 acl_list IN XS$NAME_LIST,
 is_static IN BOOLEAN := FALSE)
 RETURN SELF AS RESULT,

-- Constructor function - parameterized row_level realm
CONSTRUCTOR FUNCTION XS$REALM_CONSTRAINT_TYPE
 (realm IN VARCHAR2,
 is_static IN BOOLEAN := FALSE)
 RETURN SELF AS RESULT,

-- Constructor function - master realm
CONSTRUCTOR FUNCTION XS$REALM_CONSTRAINT_TYPE
 (parent_schema IN VARCHAR2,
 parent_object IN VARCHAR2,
 key_list IN XS$KEY_LIST,
 when_condition IN VARCHAR2:= NULL)
 RETURN SELF AS RESULT,

-- Accessor functions
MEMBER FUNCTION GET_TYPE RETURN NUMBER,
MEMBER FUNCTION GET_REALM RETURN VARCHAR2,
MEMBER FUNCTION GET_ACLS RETURN XS$NAME_LIST,
MEMBER FUNCTION IS_DYNAMIC_REALM RETURN BOOLEAN,
MEMBER FUNCTION IS_STATIC_REALM RETURN BOOLEAN,
MEMBER FUNCTION IS_PARAMETERIZED_REALM RETURN BOOLEAN,
MEMBER FUNCTION GET_KEYS RETURN XS$KEY_LIST,
MEMBER FUNCTION GET_PARENT_SCHEMA RETURN VARCHAR2,
MEMBER FUNCTION GET_PARENT_OBJECT RETURN VARCHAR2,
MEMBER FUNCTION GET_WHEN_CONDITION RETURN VARCHAR2,
MEMBER PROCEDURE SET_REALM(realm IN VARCHAR2),
MEMBER PROCEDURE ADD_ACLS(acl IN VARCHAR2),
MEMBER PROCEDURE ADD_ACLS(acl_list IN XS$NAME_LIST),
MEMBER PROCEDURE SET_ACLS(acl_list IN XS$NAME_LIST),
MEMBER PROCEDURE SET_DYNAMIC,
MEMBER PROCEDURE SET_STATIC,
MEMBER PROCEDURE ADD_KEYS(key IN XS$KEY_TYPE),
MEMBER PROCEDURE ADD_KEYS(key_list IN XS$KEY_LIST),
MEMBER PROCEDURE SET_KEYS(key_list IN XS$KEY_LIST),
MEMBER PROCEDURE SET_PARENT_SCHEMA(parent_schema IN VARCHAR2),
MEMBER PROCEDURE SET_PARENT_OBJECT(parent_object IN VARCHAR2),
MEMBER PROCEDURE SET_WHEN_CONDITION(when_condition IN VARCHAR2)
);
-- Create a list of realm constraint type
CREATE OR REPLACE TYPE XS$REALM_CONSTRAINT_LIST AS VARRAY(1000)
 OF XS$REALM_CONSTRAINT_TYPE;
-- Create a type for column(attribute) security
CREATE OR REPLACE TYPE XS$COLUMN_CONSTRAINT_TYPE AS OBJECT (
-- column list
column_list XS$LIST,
-- privilege for column security
privilege VARCHAR2(261),

Chapter 11
XS_DATA_SECURITY Package

11-37

-- Constructor function
CONSTRUCTOR FUNCTION XS$COLUMN_CONSTRAINT_TYPE
 (column_list IN XS$LIST,
 privilege IN VARCHAR2)
 return SELF AS RESULT,
MEMBER FUNCTION GET_COLUMNS RETURN XS$LIST,
MEMBER FUNCTION GET_PRIVILEGE RETURN VARCHAR2,
MEMBER PROCEDURE ADD_COLUMNS(column IN VARCHAR2),
MEMBER PROCEDURE ADD_COLUMNS(column_list IN XS$LIST),
MEMBER PROCEDURE SET_COLUMNS(column_list IN XS$LIST),
MEMBER PROCEDURE SET_PRIVILEGE(privilege IN VARCHAR2)
);
-- Create a list of column constraint for column security
CREATE OR REPLACE TYPE XS$COLUMN_CONSTRAINT_LIST
 IS VARRAY(1000) of XS$COLUMN_CONSTRAINT_TYPE;

Summary of XS_DATA_SECURITY Subprograms

Table 11-5 Summary of XS_DATA_SECURITY Subprograms

Subprogram Brief Description

CREATE_POLICY Procedure Creates a new data security policy.

APPEND_REALM_CONSTRAINTS
Procedure

Adds one or more data realm constraints to an existing data
security policy.

REMOVE_REALM_CONSTRAINTS
Procedure

Removes all data realm constraints for the specified data security
policy.

ADD_COLUMN_CONSTRAINTS Procedure Adds one or more column constraint to the specified data security
policy.

REMOVE_COLUMN_CONSTRAINTS
Procedure

Removes all column constraints from a data security policy.

CREATE_ACL_PARAMETER Procedure Creates an ACL parameter for the specified data security policy.

DELETE_ACL_PARAMETER Procedure Deletes an ACL parameter from the specified data security policy.

SET_DESCRIPTION Procedure Sets a description string for the specified data security policy.

DELETE_POLICY Procedure Deletes a data security policy.

Table 11-6 Summary of XS_DATA_SECURITY Subprograms for Managing Data Security
Policies on Tables or Views

Subprogram Brief Description

ENABLE_OBJECT_POLICY Procedure Enables the data security policy for the specified table or view.

DISABLE_OBJECT_POLICY Procedure Disables the data security policy for the specified table or view.

REMOVE_OBJECT_POLICY Procedure Removes or drops the data security from the specified table or view
without deleting it.

APPLY_OBJECT_POLICY Procedure Enables or reenables the data security policy for the specified table
or view.

This section describes the following XS_DATA_SECURITY subprograms:

Chapter 11
XS_DATA_SECURITY Package

11-38

CREATE_POLICY Procedure
The CREATE_POLICY procedure creates a new data security policy.

Syntax

XS_DATA_SECURITY.CREATE_POLICY (
 name IN VARCHAR2,
 realm_constraint_list IN XS$REALM_CONSTRAINT_LIST,
 column_constraint_list IN XS$COLUMN_CONSTRAINT_LIST := NULL,
 description IN VARCHAR2 :=NULL) ;

Parameters

Parameter Description

name The name for the data security policy to be created.

The name is schema qualified, for example,
SCOTT.POLICY1. When the schema part of the name is
missing, the current session schema is assumed. For
example, in this same example, if the name is specified as
POLICY1, and the current schema is SCOTT, it would resolve
to SCOTT.POLICY1.

realm_constraint_list The list of data realm constraints, which determine the rows
to be protected by the data security policy.

column_constraint_list This is optional. The list of attributes and the privileges
protecting them.

description An optional description for the data security policy.

Examples

The following example creates a data security policy called USER1.EMPLOYEES_DS. It
uses a data realm constraint to protect data related to department numbers 60 and
100. In addition, access to the SALARY column (attribute) is restricted using an column
constraint.

DECLARE
 realm_cons XS$REALM_CONSTRAINT_LIST;
 column_cons XS$COLUMN_CONSTRAINT_LIST;
BEGIN
 realm_cons :=
 XS$REALM_CONSTRAINT_LIST(
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (60, 100)',
 acl_list=> XS$NAME_LIST('HRACL')));

 column_cons :=
 XS$COLUMN_CONSTRAINT_LIST(
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('SALARY'),
 privilege=> 'VIEW_SENSITIVE_INFO'));

 SYS.XS_DATA_SECURITY.CREATE_POLICY(
 name=>'USER1.EMPLOYEES_DS',
 realm_constraint_list=>realm_cons,
 column_constraint_list=>column_cons);
END;

Chapter 11
XS_DATA_SECURITY Package

11-39

APPEND_REALM_CONSTRAINTS Procedure
The APPEND_REALM_CONSTRAINTS procedure adds one or more data realm constraints
to an existing data security policy.

Syntax

XS_DATA_SECURITY.APPEND_REALM_CONSTRAINTS (
 policy IN VARCHAR2,
 realm_constraint IN XS$REALM_CONSTRAINT_TYPE);

XS_DATA_SECURITY.APPEND_REALM_CONSTRAINTS (
 policy IN VARCHAR2,
 realm_constraint_list IN XS$REALM_CONSTRAINT_LIST);

Parameters

Parameter Description

policy The name of the data security policy to which the data realm
constraints are to be added.

The name is schema qualified, for example, SCOTT.POLICY1.
When the schema part of the name is missing, the current
session schema is assumed. For example, in this same
example, if the name is specified as POLICY1, and the current
schema is SCOTT, it would resolve to SCOTT.POLICY1.

realm_constraint The data realm constraint to be added to the data security
policy.

realm_constraint_list The list of data realm constraints to be added to the data
security policy.

Examples

The following example appends a new data realm constraint to the EMPLOYEES_DS data
security policy.

DECLARE
 realm_cons XS$REALM_CONSTRAINT_TYPE;
BEGIN
 realm_cons :=
 XS$REALM_CONSTRAINT_TYPE(realm=> 'DEPARTMENT_ID in (40, 50)',
 acl_list=> XS$NAME_LIST('HRACL'));

 SYS.XS_DATA_SECURITY.APPEND_REALM_CONSTRAINTS(
 policy=>'EMPLOYEES_DS',
 realm_constraint=>realm_cons);
END;

REMOVE_REALM_CONSTRAINTS Procedure
The REMOVE_REALM_CONSTRAINTS procedure removes all data realm constraints from a
data security policy.

Chapter 11
XS_DATA_SECURITY Package

11-40

Syntax

XS_DATA_SECURITY.REMOVE_REALM_CONSTRAINTS (
 policy IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy from which the data realm constraints are
to be removed.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is assumed.
For example, in this same example, if the name is specified as POLICY1, and
the current schema is SCOTT, it would resolve to SCOTT.POLICY1.

Examples

The following example removes all data realm constraints from the EMPLOYEES_DS data
security policy.

BEGIN
 SYS.XS_DATA_SECURITY.REMOVE_REALM_CONSTRAINTS('EMPLOYEES_DS');
END;

ADD_COLUMN_CONSTRAINTS Procedure
The ADD_COLUMN_CONSTRAINTS procedure adds one or more column constraint to a
data security policy.

Syntax

XS_DATA_SECURITY.ADD_COLUMN_CONSTRAINTS (
 policy IN VARCHAR2,
 column_constraint IN XS$COLUMN_CONSTRAINT_TYPE);

XS_DATA_SECURITY.ADD_COLUMN_CONSTRAINTS (
 policy IN VARCHAR2,
 column_constraint_list IN XS$COLUMN_CONSTRAINT_LIST);

Parameters

Parameter Description

policy The name of the data security policy to which the attribute
constraints are to be added.

The name is schema qualified, for example,
SCOTT.POLICY1. When the schema part of the name is
missing, the current session schema is assumed. For
example, in this same example, if the name is specified as
POLICY1, and the current schema is SCOTT, it would
resolve to SCOTT.POLICY1.

column_constraint The column constraint to be added.

column_constraint_list The list of column constraints to be added.

Chapter 11
XS_DATA_SECURITY Package

11-41

Examples

The following example adds a column constraint on the COMMISSION_PCT column in the
EMPLOYEES_DS data security policy:

DECLARE
 column_cons XS$COLUMN_CONSTRAINT_TYPE;
BEGIN
 column_cons :=
 XS$COLUMN_CONSTRAINT_TYPE(column_list=> XS$LIST('COMMISSION_PCT'),
 privilege=> 'VIEW_SENSITIVE_INFO');

 SYS.XS_DATA_SECURITY.ADD_COLUMN_CONSTRAINTS(
 policy=>'EMPLOYEES_DS',
 column_constraint=>column_cons);
END;

REMOVE_COLUMN_CONSTRAINTS Procedure
The REMOVE_COLUMN_CONSTRAINTS procedure removes all column constraints from a
data security policy.

Syntax

XS_DATA_SECURITY.REMOVE_COLUMN_CONSTRAINTS (
 policy IN VARCHAR2,);

Parameters

Parameter Description

policy The name of the data security policy for which the column constraints are to be
removed.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is assumed.
For example, in this same example, if the name is specified as POLICY1, and
the current schema is SCOTT, it would resolve to SCOTT.POLICY1.

Examples

The following example removes all column constraints from the EMPLOYEES_DS data
security policy:

BEGIN
 SYS.XS_DATA_SECURITY.REMOVE_COLUMN_CONSTRAINTS('EMPLOYEES_DS');
END;

CREATE_ACL_PARAMETER Procedure
The CREATE_ACL_PARAMETER procedure creates an ACL parameter for a data security
policy.

Syntax

XS_DATA_SECURITY.CREATE_ACL_PARAMETER (
 policy IN VARCHAR2,

Chapter 11
XS_DATA_SECURITY Package

11-42

 parameter IN VARCHAR2,
 param_type IN NUMBER);

Parameters

Parameter Description

policy The name of the data security policy for which the ACL parameter needs to
be created.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

parameter The name of the ACL parameter to be created.

param_type The data type of the parameter. This can be 1 (NUMBER) or 2
(VARCHAR).

Examples

The following examples creates an ACL parameter, called DEPT_POLICY, for the
EMPLOYEES_DS data security policy:

BEGIN
 SYS.XS_DATA_SECURITY.CREATE_ACL_PARAMETER('EMPLOYEES_DS','DEPT_POLICY',1);
END;

DELETE_ACL_PARAMETER Procedure
The DELETE_ACL_PARAMETER procedure deletes an ACL parameter for a data security
policy.

Syntax

XS_DATA_SECURITY.DELETE_ACL_PARAMETER (
 policy IN VARCHAR2,
 parameter IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

policy The name of the data security policy for which the ACL parameter is to
be deleted.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

parameter The name of the ACL parameter to be deleted.

Chapter 11
XS_DATA_SECURITY Package

11-43

Parameter Description

delete_option The delete option to use. The following options are available:

• DEFAULT_OPTION (default):

The default option allows deleting an ACL parameter only if it is not
referenced elsewhere. If there are other entities that reference the
ACL parameter, then the ACL parameter cannot be deleted.

• CASCADE_OPTION:

The cascade option deletes the ACL parameter together with any
references to it.The user deleting the security class must have
privileges to delete these references as well.

• ALLOW_INCONSISTENCIES_OPTION:

The allow inconsistencies option lets you delete the entity even if
other entities have late binding references to it. If the entity is part of
an early dependency, then the delete fails and an error is raised.

Examples

The following example deletes the DEPT_POLICY ACL parameter from the
EMPLOYEES_DS data security policy, using the default option.

BEGIN
 SYS.XS_DATA_SECURITY.DELETE_ACL_PARAMETER('EMPLOYEES_DS','DEPT_POLICY',
 XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

SET_DESCRIPTION Procedure
The SET_DESCRPTION procedure sets a description string for the specified data security
policy.

Syntax

XS_DATA_SECURITY.SET_DESCRIPTION (
 policy IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy for which the description is to be set.

The name is schema qualified, for example, SCOTT.POLICY1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

description A description string for the specified data security policy.

Examples

The following example sets a description string for the EMPLOYEES_DS data security
policy:

Chapter 11
XS_DATA_SECURITY Package

11-44

BEGIN
 SYS.XS_DATA_SECURITY.SET_DESCRIPTION('EMPLOYEES_DS',
 'Data Security Policy for HR.EMPLOYEES');
END;

DELETE_POLICY Procedure
The DELETE_POLICY procedure deletes a data security policy.

Syntax

XS_DATA_SECURITY.DELETE_POLICY(
 policy IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

policy The name of the data security policy to be deleted.

The name is schema qualified, for example, SCOTT.POLICY1. When
the schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified
as POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

delete_option The delete option to use. To the security policy, the behavior of the
following options is the same:

• DEFAULT_OPTION:

The default option allows deleting a data security policy only if it is
not referenced elsewhere. If there are other entities that reference
the data security policy, then the data security policy cannot be
deleted.

• CASCADE_OPTION:

The cascade option deletes the data security policy together with
any references to it.The user deleting the data security policy
deletes these references as well.

• ALLOW_INCONSISTENCIES_OPTION:

The allow inconsistencies option lets you delete the entity even if
other entities have late binding references to it. If the entity is part
of an early dependency, then the delete fails and an error is raised.

Examples

The following example deletes the EMPLOYEES_DS data security policy using the default
option.

BEGIN
 SYS.XS_DATA_SECURITY.DELETE_POLICY('EMPLOYEES_DS',
 XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

ENABLE_OBJECT_POLICY Procedure
The ENABLE_OBJECT_POLICY procedure enables the data security policy for the
specified table or view. ENABLE_OBJECT_POLICY enables the ACL-based row level
security policy for the table or view.

Chapter 11
XS_DATA_SECURITY Package

11-45

You may want to enable data security policies after you perform an import or export on
the tables that it affects, or for debugging purposes.

To find the status of the data security policies for tables or views available for the
current user, query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Syntax

XS_DATA_SECURITY.ENABLE_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy to be enabled.

The name is schema qualified, for example, SCOTT.POLICY1. When
the schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified
as POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

schema The name of the schema that contains the table or view to enable.

object The name of the table or view to enable the data security policy.

Examples

The following example enables XDS for the products table in the sales schema.

BEGIN
 SYS.XS_DATA_SECURITY.ENABLE_OBJECT_POLICY(policy =>'CUST_DS', schema=>'sales',
object=>'products');
END;

DISABLE_OBJECT_POLICY Procedure
The DISABLE_OBJECT_POLICY procedure disables the data security policy for the
specified table or view. DISABLE_OBJECT_POLICY disables the ACL-based row level
security policy for the table or view.

You may want to disable Real Application Security if you are performing an import or
export on the tables that it affects, or for debugging purposes.

To find the status of the data security policies for tables or views available for the
current user, query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Syntax

XS_DATA_SECURITY.DISABLE_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2);

Chapter 11
XS_DATA_SECURITY Package

11-46

Parameters

Parameter Description

policy The name of the data security policy to be disabled.

The name is schema qualified, for example, SCOTT.POLICY1. When
the schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified
as POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

schema The name of the schema that contains the table or view to disable.

object The name of the table or view to disable a data security policy.

Examples

The following example disables XDS for the products table in the sales schema.

BEGIN
 SYS.XS_DATA_SECURITY.DISABLE_OBJECT_POLICY(policy =>'CUST_DS', schema=>'sales',
object=>'products');
END;

REMOVE_OBJECT_POLICY Procedure
The REMOVE_OBJECT_POLICY procedure drops the data security policy from the
specified table or view without deleting it. REMOVE_OBJECT_POLICY drops the ACL
Materialized View built by ENABLE_XDS on a static data realm constraint.

To find the status of the data security policies for tables or views available for the
current user, query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Syntax

XS_DATA_SECURITY.REMOVE_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2);

Parameters

Parameter Description

policy The name of the data security policy to be dropped.

The name is schema qualified, for example, SCOTT.POLICY1. When
the schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified
as POLICY1, and the current schema is SCOTT, it would resolve to
SCOTT.POLICY1.

schema The name of the schema that contains the table or view from which to
remove the data security policy.

object The name of the table or view from which to remove the data security.
policy

Chapter 11
XS_DATA_SECURITY Package

11-47

Examples

The following example drops the CUST_DS data security policy from the products table
in the sales schema.

BEGIN
 SYS.XS_DATA_SECURITY.REMOVE_OBJECT_POLICY(policy=>'CUST_DS', schema=>'sales',
object=>'products');
END;

APPLY_OBJECT_POLICY Procedure
The APPLY_OBJECT_POLICY procedure enables or reenables the data security policy for
the specified database table or view.

To find the status of the data security policies for tables or views available for the
current user, query the DBA_XS_APPLIED_POLICIES data dictionary view.

Before enforcing policies, a check is made for the APPLY_SEC_POLICY privilege.

Syntax

XS_DATA_SECURITY.APPLY_OBJECT_POLICY (
 policy IN VARCHAR2,
 schema IN VARCHAR2,
 object IN VARCHAR2,
 row_acl IN BOOLEAN DEFAULT FALSE,
 owner_bypass IN BOOLEAN DEFAULT FALSE,
 statement_types IN VARCHAR2 DEFAULT NULL,
 aclmv IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

policy Name of the data security policy to be enabled.

The name is schema qualified, for example, SCOTT.POLICY1. When
the schema part of the name is missing, the current session schema
is assumed. For example, in this same example, if the name is
specified as POLICY1, and the current schema is SCOTT, it would
resolve to SCOTT.POLICY1.

schema The name of the schema that contains the relational table or view to
enable or re-enable.

object The name of the relational table or view to enable or re-enable for
the data security policy.

row_acl The default is FALSE. When set to TRUE, creates the hidden column
SYS_ACLOD.

owner_bypass The owner of the object can bypass the data security policy. The
default is FALSE.

Chapter 11
XS_DATA_SECURITY Package

11-48

Parameter Description

statement_types The types can be: SELECT, INSERT, UPDATE, DELETE, and INDEX.

Note that if your application security requires that you must update
table rows and also restrict read access to certain columns in the
same table, you must use two APPLY_OBJECT_POLICY procedures
to enforce each data security policy to ensure precise enforcement of
each policy. For example, one APPLY_OBJECT_POLICY procedure
would enforce the DML statement_types required for updating
table rows (for example, INSERT, UPDATE, DELETE), while the other
APPLY_OBJECT_POLICY procedure would enforce only the
statement_types of SELECT for the column constraint.

aclmv Specifies a user-provided MV name that maintains static ACL
information. The MV has two columns: TABLEROWID and
ACLIDLIST. The default value for aclmv is NULL.

Examples

The following example enables the DEPT_POLICY data security policy for the EMP table
in the HR schema.

BEGIN
 sys.xs_data_security.apply_object_policy(
 policy => 'HR.EMPLOYEES_DS',
 schema => 'HR',
 object => 'EMPLOYEES',
 statement_types => 'SELECT',
 owner_bypass => true);
END;

XS_DATA_SECURITY_UTIL Package
The XS_DATA_SECURITY_UTIL package is a utility package that schedules automatic
refreshment for static ACL to a user table and changes the ACL refreshment mode to
on-commit or on-demand refresh.

This section includes the following topics:

• Security Model

• Constants

• Summary of XS_DATA_SECURITY_UTIL Subprograms

Security Model
The XS_DATA_SECURITY_UTIL package is created in the SYS schema. You need
EXECUTE privileges on the package to be able to run the programs contained in this
package.

Constants
The following are valid values for ACLMV refresh modes:

Chapter 11
XS_DATA_SECURITY_UTIL Package

11-49

ACLMV_ON_DEMAND CONSTANT VARCHAR2(9) := 'ON DEMAND';
ACLMV_ON_COMMIT CONSTANT VARCHAR2(9) := 'ON COMMIT';

The following are types of refresh on static ACLMV:

XS_ON_COMMIT_MV CONSTANT BINARY_INTEGER := 0;
XS_ON_DEMAND_MV CONSTANT BINARY_INTEGER := 1;
XS_SCHEDULED_MV CONSTANT BINARY_INTEGER := 2;

The following are types of static ACLMV:

XS_SYSTEM_GENERATED_MV CONSTANT BINARY_INTEGER := 0;
XS_USER_SPECIFIED_MV CONSTANT BINARY_INTEGER := 1;

Summary of XS_DATA_SECURITY_UTIL Subprograms

Table 11-7 Summary of XS_DATA_SECURITY_UTIL Subprograms

Subprogram Brief Description

SCHEDULE_STATIC_ACL_REFRE
SH Procedure

Schedules automatic refreshment for static ACL to a user
table

ALTER_STATIC_ACL_REFRESH
Procedure

Changes the ACL refreshment mode to on-commit or on-
demand refresh.

This section describes the following XS_DATA_SECURITY_UTIL subprograms:

SCHEDULE_STATIC_ACL_REFRESH Procedure
The SCHEDULE_STATIC_ACL_REFRESH procedure is used to invoke or schedule
automatic refresh for static ACL to a user table. It can start the refresh immediately if
NULL value is passed into the start_date and repeat_interval parameters.

To find the status of all latest static ACL refresh jobs done for tables or views available
for the current user, query the ALL_XDS_LATEST_ACL_REFSTAT,
DBA_XDS_LATEST_ACL_REFSTAT, and USER_XDS_LATEST_ACL_REFSTAT
data dictionary views. All static ACL refresh job status history can be found in
ALL_XDS_ACL_REFSTAT, DBA_XDS_ACL_REFSTAT, and
USER_XDS_ACL_REFSTAT data dictionary views.

Syntax

XS_DATA_SECURITY_UTIL.SCHEDULE_STATIC_ACL_REFRESH (
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 repeat_interval IN VARCHAR2 DEFAULT NULL,
 comments IN VARCHAR2 DEFAULT NULL);

Parameters

Parameter Description

schema_name Specifies the name for the schema to which the table belongs.

table_name The table name which is used with above schema name to uniquely
identify a table for the static ACL refreshment.

Chapter 11
XS_DATA_SECURITY_UTIL Package

11-50

Parameter Description

start_date This attribute specifies the first date on which this refresh is
scheduled to run. If the function is called repeatedly, then the latest
given start_date and repeat_interval is used to schedule the
job. Each execution result of ACL refresh done by immediate call,
on-commit, or refresh job is added into XDS_ACL_REFSTAT.

If start_date and repeat_interval are left NULL, then the
refresh is launched immediately and any existing refresh schedule
is erased. For immediate refresh, no row will be added into
XDS_ACL_REFRESH, as it does not change refresh mode.

repeat_interval This attribute specifies how often the refresh should repeat. You
can specify the repeat interval by using DBMS_SCHEDULER package
calendaring syntax or using PL/SQL expressions. See Oracle
Database PL/SQL Packages and Types Reference for more
information about using calendering syntax.

The expression specified is evaluated to determine the next time
the refresh should run. If repeat_interval is not specified, the
job runs only once at the specified start date.

The start_date and repeat_interval are used to create a
refresh job by using DBMS_SCHEDULER package with end_date
default as NULL.

Comments This attribute specifies a comment about the job. By default, this
attribute is NULL

Examples

SYS.XS_DATA_SECURITY_UTIL.SCHEDULE_STATIC_ACL_REFRESH('aclmvuser', 'sales',
SYSTIMESTAMP, 'freq=hourly; interval=2');

ALTER_STATIC_ACL_REFRESH Procedure
The ALTER_STATIC_ACL_REFRESH procedure is used to change the ACL refresh mode
to on-commit or on-demand refresh.

Syntax

XS_DATA_SECURITY_UTIL.ALTER_STATIC_ACL_REFRESH (
 schema_name IN VARCHAR2 DEFAULT NULL,
 table_name IN VARCHAR2,
 refresh_mode IN VARCHAR2);

Parameters

Parameter Description

schema_name Specifies the name for the schema that the table belongs to.

table_name The table name, which is used with the schema name to uniquely
identify a table for altering the static ACL refreshment mode.

refresh_mode ON COMMIT or ON DEMAND

Chapter 11
XS_DATA_SECURITY_UTIL Package

11-51

Examples

SYS.XS_DATA_SECURITY_UTIL.ALTER_STATIC_ACL_REFRESH('aclmvuser','sales',
refresh_mode=>'ON COMMIT');

XS_DIAG Package
The XS_DIAG package includes subprograms to diagnose potential problems in data
security for principals, security classes, acls, data security policies, namespaces, and
all objects in the work space. All subprograms return TRUE if the object is valid;
otherwise, each returns FALSE. For each identified inconsistency, a row is inserted into
the XS$VALIDATION_TABLE validation table until the maximum number of
inconsistencies you specify with the error_limit parameter is reached. Users can
query this validation table to determine the identified inconsistencies for information
that includes the message code, the description about the error, the path leading to
the invalid object, and any other helpful information that might assist you in identifying
the nature of the inconsistency.

This section includes the following topics:

• Security Model

• Summary of XS_DIAG Subprograms

Security Model
The XS_DIAG package is created in the SYS schema. The caller has invoker's rights on
this package and needs to have ADMIN_ANY_SEC_POLICY system privilege to run the
XS_DIAG package. EXECUTE permission on the XS_DIAG package is granted to PUBLIC.
SELECT permission on the XS$VALIDATION_TABLE validation table is granted to PUBLIC.

Summary of XS_DIAG Subprograms

Table 11-8 Summary of XS_DIAG Subprograms

Subprogram Description

VALIDATE_PRINCIPAL Function Validates the principal.

VALIDATE_SECURITY_CLASS Function Validates the security class.

VALIDATE_ACL Function Validates the ACL.

VALIDATE_DATA_SECURITY Function Validates the data security policy or validates the
data security policy against a specific table.

VALIDATE_NAMESPACE_TEMPLATE
Function

Validates the namespace template.

VALIDATE_WORKSPACE Function Validates an entire workspace.

This section describes the following XS_DIAG subprograms:

VALIDATE_PRINCIPAL Function
The VALIDATE_PRINCIPAL function validates the principal. This function returns TRUE if
the object is valid; otherwise, it returns FALSE. For each identified inconsistency, a row

Chapter 11
XS_DIAG Package

11-52

is inserted into the XS$VALIDATION_TABLE validation table until the maximum number of
inconsistencies that can be stored is reached. Users must query this validation table to
find out what caused the validation failure.

Syntax

validate_principal(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

error_limit The maximum number of inconsistencies that may be stored in
the validation table.

Examples

Validate the principal, user user1, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_principal('user1', 100) then
 dbms_output.put_line('The user is valid.');
 else
 dbms_output.put_line('The user is invalid.');
 end if;
end;
/
select * from xs$validation_table;

Validate the principal, role role1, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_principal('role1', 100) then
 dbms_output.put_line('The role is valid.');
 else
 dbms_output.put_line('The role is invalid.');
 end if;
end;
/
select * from xs$validation_table;

VALIDATE_SECURITY_CLASS Function
The VALIDATE_SECURITY_CLASS function validates the security class. This function
returns TRUE if the object is valid; otherwise, it returns FALSE. For each identified
inconsistency, a row is inserted into the XS$VALIDATION_TABLE validation table until the
maximum number of inconsistencies that can be stored is reached. Users must query
this validation table to find out what caused the validation failure.

Chapter 11
XS_DIAG Package

11-53

Syntax

validate_security_class(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

error_limit The maximum number of inconsistencies that may be stored in
the validation table.

Examples

Validate the security class, sec1, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_security_class('sec1', 100) then
 dbms_output.put_line('The security class is valid.');
 else
 dbms_output.put_line('The security class is invalid.');
 end if;
end;
/
select * from xs$validation_table;

VALIDATE_ACL Function
The VALIDATE_ACL function validates the ACL. This function returns TRUE if the object
is valid; otherwise, it returns FALSE. For each identified inconsistency, a row is inserted
into the XS$VALIDATION_TABLE validation table until the maximum number of
inconsistencies that can be stored is reached. Users must query this validation table to
find out what caused the validation failure.

Syntax

validate_acl(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

error_limit The maximum number of inconsistencies that may be stored in
the validation table.

Examples

Validate the ACL, acl1, then query the validation table in case there are
inconsistencies.

Chapter 11
XS_DIAG Package

11-54

begin
 if sys.xs_diag.validate_acl('acl1', 100) then
 dbms_output.put_line('The ACL is valid.');
 else
 dbms_output.put_line('The ACL is invalid.');
 end if;
end;
/
select * from xs$validation_table;

VALIDATE_DATA_SECURITY Function
The VALIDATE_DATA_SECURITY function validates the data security. This function
returns TRUE if the object is valid; otherwise, it returns FALSE. For each identified
inconsistency, a row is inserted into the XS$VALIDATION_TABLE validation table until the
maximum number of inconsistencies that can be stored is reached. Users must query
this validation table to find out what caused the validation failure.

This function has three styles of policy validation.

• When policy is not NULL and table_name is NULL, the function validates the
policy against all the tables to which the policy is applied. Note that when
table_name is NULL, table_owner is ignored even if it is not NULL.

• When both policy and table_name are not NULL, the function validates the policy
against the specific table. If table_owner is not provided, the current schema is
used.

• When policy is NULL and table_name is not NULL, the function validates all
policies applied to the table against the table. If table_owner is not provided, the
current schema is used.

Syntax

validate_data_security(policy IN VARCHAR2 :=NULL,
 table_owner IN VARCHAR2 :=NULL,
 table_name IN VARCHAR2 :=NULL,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

policy The name of the object to be validated.

table_owner The name of the schema of the table or view.

table_name The name of the table or view.

error_limit The maximum number of inconsistencies that may be stored in
the validation table.

Examples

Validate a policy, policy1 on all the applied tables, then query the validation table in
case there are inconsistencies.

begin
 if sys.xs_diag.validate_data_security(policy => 'policy1',
 error_limit => 100) then

Chapter 11
XS_DIAG Package

11-55

 dbms_output.put_line('The policy is valid on all the applied tables.');
 else
 dbms_output.put_line('The policy is invalid on some of the applied tables.');
 end if;
end;
/
select * from xs$validation_table;

Validate a policy, policy1 on a given table, then query the validation table in case
there are inconsistencies.

begin
 if sys.xs_diag.validate_data_security(policy => 'policy1',
 table_owner => 'HR',
 table_name => 'EMPLOYEES',
 error_limit => 100) then
 dbms_output.put_line('The policy is valid on the table.');
 else
 dbms_output.put_line('The policy is invalid on the table.');
 end if;
end;
/
select * from xs$validation_table;

Validate all the policies applied to a given table, then query the validation table in case
there are inconsistencies.

begin
 if sys.xs_diag.validate_data_security(table_owner => 'HR',
 table_name => 'EMPLOYEES',
 error_limit => 100) then
 dbms_output.put_line('All the applied policies on the table are valid.');
 else
 dbms_output.put_line('Some applied policies on the table are invalid');
 end if;
end;
/
select * from xs$validation_table;

VALIDATE_NAMESPACE_TEMPLATE Function
The VALIDATE_NAMESPACE_TEMPLATE function validates the namespace. This function
returns TRUE if the object is valid; otherwise, it returns FALSE. For each identified
inconsistency, a row is inserted into the XS$VALIDATION_TABLE validation table until the
maximum number of inconsistencies that can be stored is reached. Users must query
this validation table to find out what caused the validation failure.

Syntax

validate_namespace_template(name IN VARCHAR2,
 error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

name The name of the object to be validated.

Chapter 11
XS_DIAG Package

11-56

Parameter Description

error_limit The maximum number of inconsistencies that may be stored in
the validation table.

Examples

Validate the namespace, ns1, then query the validation table in case there are
inconsistencies.

begin
 if sys.xs_diag.validate_namespace_template('ns1', 100) then
 dbms_output.put_line('The namespace template is valid.');
 else
 dbms_output.put_line('The namespace template is invalid.');
 end if;
end;
/
select * from xs$validation_table;

VALIDATE_WORKSPACE Function
The VALIDATE_WORKSPACE function validates all the artifacts, in other words, it validates
all objects that exist in the work space by using this one function. This function returns
TRUE if all the objects are valid; otherwise, it returns FALSE. For each identified
inconsistency, a row is inserted into the XS$VALIDATION_TABLE validation table until the
maximum number of inconsistencies that can be stored is reached. Users must query
this validation table to find out what caused the validation failure.

Syntax

validate_workspace(error_limit IN PLS_INTEGER := 1)
 RETURN BOOLEAN;

Parameters

Parameter Description

error_limit The maximum number of inconsistencies that may be stored in
the validation table.

Examples

Validate all the objects in the workspace, then query the validation table in case there
are inconsistencies.

begin
 if sys.xs_diag.validate_workspace(100) then
 dbms_output.put_line('The objects are valid.');
 else
 dbms_output.put_line('The objects are invalid.');
 end if;
end;
/
select * from xs$validation_table;

Chapter 11
XS_DIAG Package

11-57

XS_NAMESPACE Package
The XS_NAMESPACE package includes subprograms to create, manage, and delete
namespace templates and attributes.

This section includes the following topics:

• Security Model

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_NAMESPACE Subprograms

Security Model
The XS_NAMESPACE package is created under the SYS schema. The DBA role is granted
the ADMIN_ANY_SEC_POLICY, which allows it to administer namespace templates and
attributes.

Constants
The following are attribute event constants:

NO_EVENT CONSTANT PLS_INTEGER := 0;
FIRSTREAD_EVENT CONSTANT PLS_INTEGER := 1;
UPDATE_EVENT CONSTANT PLS_INTEGER := 2;
FIRSTREAD_PLUS_UPDATE_EVENT CONSTANT PLS_INTEGER := 3;

Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are
defined for this package.

-- Type definition for namespace template attribute
CREATE OR REPLACE TYPE XS$NS_ATTRIBUTE AS OBJECT (
-- Member Variables
-- Name of the namespace template attribute
-- Must be unique within a namespace template
-- Cannot be null
name VARCHAR2(4000),
-- Default value assigned to the attribute
default_value VARCHAR2(4000),
-- Trigger events associated with the attribute
-- Allowed values are :
-- 0 : NO_EVENT
-- 1 : FIRST_READ_EVENT
-- 2 : UPDATE_EVENT
-- 3 : FIRST_READ_PLUS_UPDATE_EVENT
attribute_events NUMBER,

-- Constructor function
CONSTRUCTOR FUNCTION XS$NS_ATTRIBUTE
 (name IN VARCHAR2,
 default_value IN VARCHAR2 := NULL,
 attribute_events IN NUMBER := 0)
 RETURN SELF AS RESULT,

Chapter 11
XS_NAMESPACE Package

11-58

-- Return the name of the attribute
MEMBER FUNCTION GET_NAME RETURN VARCHAR2,
-- Return the default value of the attribute
MEMBER FUNCTION GET_DEFAULT_VALUE RETURN VARCHAR2,
-- Return the trigger events associated with attribute
MEMBER FUNCTION GET_ATTRIBUTE_EVENTS RETURN NUMBER,
-- Mutator procedures
-- Set the default value for the attribute
MEMBER PROCEDURE SET_DEFAULT_VALUE(default_value IN VARCHAR2),
-- Associate trigger events to the attribute
MEMBER PROCEDURE SET_ATTRIBUTE_EVENTS(attribute_events IN NUMBER)
);
CREATE OR REPLACE TYPE XS$NS_ATTRIBUTE_LIST AS VARRAY(1000) OF XS$NS_ATTRIBUTE;

Summary of XS_NAMESPACE Subprograms

Table 11-9 Summary of XS_NAMESPACE Subprograms

Subprogram Description

CREATE_TEMPLATE Procedure Creates a new namespace template.

ADD_ATTRIBUTES Procedure Adds one or more attributes to an existing namespace
template.

REMOVE_ATTRIBUTES
Procedure

Removes one or more attributes from a namespace
template.

SET_HANDLER Procedure Assigns a handler function for the specified namespace
template.

SET_DESCRIPTION Procedure Sets a description string for the specified namespace
template.

DELETE_TEMPLATE Procedure Deletes the specified namespace template.

This section describes the following XS_NAMESPACE subprograms:

CREATE_TEMPLATE Procedure
The CREATE_TEMPLATE procedure creates a new namespace template.

Syntax

XS_NAMESPACE.CREATE_TEMPLATE (
 name IN VARCHAR2,
 attr_list IN XS$NS_ATTRIBUTE_LIST := NULL,
 schema IN VARCHAR2 := NULL,
 package IN VARCHAR2 := NULL,
 function IN VARCHAR2 := NULL,
 acl IN VARCHAR2 := 'SYS.NS_UNRESTRICTED_ACL'
 description IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the namespace template to be created.

Chapter 11
XS_NAMESPACE Package

11-59

Parameter Description

attr_list The attributes contained in the namespace template together with their
default values and associated attribute events, such as UPDATE_EVENT.

schema The schema that contains the handler function for the namespace
template.

package The package that contains the handler function for the namespace
template.

function The handler function for the namespace template. The handler function
is called when an attribute event occurs.

acl The name of the ACL for this namespace template. If no ACL is
provided, the default is the predefined ACL
SYS.NS_UNRESTRICTED_ACL, which allows unrestricted attribute
operations by the application user.

description An optional description string for the namespace template.

Examples

The following example creates a namespace template called POAttrs. The
namespace template contains a list of attributes defined by attrlist. The handler
function for the namespace template is called Populate_Order_Func. This handler
function is part of the Orders_Pckg package, which is contained in the SCOTT schema.
The namespace template has NS_UNRESTRICTED_ACL set on the template, which allows
unrestricted operation on namespaces created from the template.

DECLARE
 attrlist XS$NS_ATTRIBUTE_LIST;
BEGIN
 attrlist := XS$NS_ATTRIBUTE_LIST();
 attrlist.extend(2);
 attrlist(1) := XS$NS_ATTRIBUTE('desc', 'general');
 attrlist(2) := XS$NS_ATTRIBUTE(name=>'item_no',
 attribute_events=>XS_NAMESPACE.FIRSTREAD_EVENT);
 SYS.XS_NAMESPACE.CREATE_TEMPLATE('POAttrs', attrlist, 'SCOTT',
 'Orders_Pckg','Populate_Order_Func',
 'SYS.NS_UNRESTRICTED_ACL',
 'Purchase Order Attributes');
END;

ADD_ATTRIBUTES Procedure
The ADD_ATTRIBUTES procedure adds one or more attributes to an existing namespace
template.

Syntax

XS_NAMESPACE.ADD_ATTRIBUTES (
 template IN VARCHAR2,
 attribute IN VARCHAR2,
 default_value IN VARCHAR2 := NULL,
 attribute_events IN PLS_INTEGER := XS_NAMESPACE.NO_EVENT);

XS_NAMESPACE.ADD_ATTRIBUTES (
 template IN VARCHAR2,
 attr_list IN XS$NS_ATTRIBUTE_LIST);

Chapter 11
XS_NAMESPACE Package

11-60

Parameters

Parameter Description

template The name of the namespace templates to which the attribute(s) is/are
to be added.

attribute The name of the attribute to be added.

attr_list The list of attributes to be added.

default_value The default value of the attribute.

attribute_events The attribute event associated with the attribute, such as update event.

Examples

The following example adds an attribute called item_type to the POAttrs namespace.
It also specifies a default value and attribute event for the new attribute that is added.

BEGIN
 SYS.XS_NAMESPACE.ADD_ATTRIBUTES(template=>'POAttrs',attribute=>'item_type',
 default_value=>'generic',
 attribute_events=>XS_NAMESPACE.update_event);
END;

REMOVE_ATTRIBUTES Procedure
The REMOVE_ATTRIBUTES procedure removes one or more attributes from a namespace
template. If no attribute names are specified, then all attributes are removed from the
namespace template.

Syntax

XS_NAMESPACE.REMOVE_ATTRIBUTES (
 template IN VARCHAR2,
 attribute IN VARCHAR2);

XS_NAMESPACE.REMOVE_ATTRIBUTES (
 template IN VARCHAR2,
 attr_list IN XS$LIST);

XS_NAMESPACE.REMOVE_ATTRIBUTES (
 template IN VARCHAR2);

Parameters

Parameter Description

template The name of the namespace template from which the attribute(s) is/are
to be removed.

attribute The name of the attribute to be removed.

attr_list The list of attribute names to be removed.

Examples

The following example removes the item_type attribute from the POAttrs namespace.

Chapter 11
XS_NAMESPACE Package

11-61

BEGIN
 SYS.XS_NAMESPACE.REMOVE_ATTRIBUTES('POAttrs','item_type');
END;

The following example removes all attributes from the POAttrs namespace template.

BEGIN
 SYS.XS_NAMESPACE.REMOVE_ATTRIBUTES('POAttrs');
END;

SET_HANDLER Procedure
The SET_HANDLER procedure assigns a handler function for the specified namespace
template.

Syntax

XS_NAMESPACE.SET_HANDLER (
 template IN VARCHAR2,
 schema IN VARCHAR2,
 package IN VARCHAR2,
 function IN VARCHAR2);

Parameters

Parameter Description

template The name of the namespace template for which the handler function is
to be set.

schema The schema containing the handler package and function.

package The name of the package that contains the handler function.

function The name of the handler function for the namespace template.

Examples

The following example sets a handler function, called Populate_Order_Func, for the
POAttrs namespace template.

BEGIN
 SYS.XS_NAMESPACE.SET_HANDLER('POAttrs','SCOTT',
 'Orders_Pckg','Populate_Order_Func');
END;

SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure sets a description string for the specified namespace
template.

Syntax

XS_NAMESPACE.SET_DESCRIPTION (
 template IN VARCHAR2,
 description IN VARCHAR2);

Chapter 11
XS_NAMESPACE Package

11-62

Parameters

Parameter Description

template The name of the namespace template whose description is to be set.

description A description string for the specified namespace template.

Examples

The following example sets a description string for the POAttrs namespace template.

BEGIN
 SYS.XS_NAMESPACE.SET_DESCRIPTION('POAttrs','Purchase Order Attributes');
END;

DELETE_TEMPLATE Procedure
The DELETE_TEMPLATE procedure deletes the specified namespace template.

Syntax

XS_NAMESPACE.DELETE_TEMPLATE(
 template IN VARCHAR2,
 delete_option IN PLS_INTEGER := XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

template The name of the namespace template to be deleted.

delete_option The delete option to use. To the namespace template, the behavior of
the following options is the same:

• DEFAULT_OPTION:

The default option allows deleting a namespace template only if it
is not referenced elsewhere. If there are other entities that
reference the namespace template, then the namespace template
cannot be deleted.

• CASCADE_OPTION:

The cascade option deletes the namespace template together with
any references to it. The user deleting the namespace template
deletes these references as well.

• ALLOW_INCONSISTENCIES_OPTION:

The allow inconsistencies option lets you delete the entity even if
other entities have late binding references to it. If the entity is part
of an early dependency, then the delete fails and an error is raised.

Examples

The following example deletes the POAttrs namespace template using the default
delete option.

BEGIN
 SYS.XS_NAMESPACE.DELETE_TEMPLATE('POAttrs',XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

Chapter 11
XS_NAMESPACE Package

11-63

XS_PRINCIPAL Package
The XS_PRINCIPAL package contains procedures used to create, manage, and
delete application principals. These application principals include application users,
regular application roles, and dynamic application roles.

This section includes the following topics:

• Security Model

• Constants

• Object Types, Constructor Functions, Synonyms, and Grants

• Summary of XS_PRINCIPAL Subprograms

Security Model
The XS_PRINCIPAL package is created under the SYS schema.

Users with Real Application Security PROVISION privilege can create, modify, or drop
application users and roles. The privileges required to create, modify, or drop
application users and roles are no longer governed by the same system privileges
required to create, modify, or drop database users and roles.

Constants
The following constants define the user's status:

ACTIVE CONSTANT PLS_INTEGER := 1;
INACTIVE CONSTANT PLS_INTEGER := 2;
UNLOCKED CONSTANT PLS_INTEGER := 3;
EXPIRED CONSTANT PLS_INTEGER := 4;
LOCKED CONSTANT PLS_INTEGER := 5;

The following constants define dynamic role scope:

SESSION_SCOPE CONSTANT PLS_INTEGER := 0;
REQUEST_SCOPE CONSTANT PLS_INTEGER := 1;

The following constants define the verifier type:

XS_SHA512 CONSTANT PLS_INTEGER := 2 ;
XS_SALTED_SHA1 CONSTANT PLS_INTEGER := 1 ;

Object Types, Constructor Functions, Synonyms, and Grants
The following object types, constructor functions, synonyms, and GRANT statements are
defined for this package.

-- Type definition for roles granted to the principals
CREATE OR REPLACE TYPE XS$ROLE_GRANT_TYPE AS OBJECT (
-- Member Variables
-- Constants defined in other packages cannot be recognized in a type.
-- e.g. XS_ADMIN_UTIL.XSNAME_MAXLEN
-- name VARCHAR2(XS_ADMIN_UTIL.XSNAME_MAXLEN),
 name VARCHAR2(130),
-- Start date of the effective date

Chapter 11
XS_PRINCIPAL Package

11-64

 start_date TIMESTAMP WITH TIME ZONE,
-- End date of the effective date
 end_date TIMESTAMP WITH TIME ZONE,

 CONSTRUCTOR FUNCTION XS$ROLE_GRANT_TYPE (
 name IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE:= NULL,
 end_date IN TIMESTAMP WITH TIME ZONE:= NULL)
 RETURN SELF AS RESULT,

 MEMBER FUNCTION get_role_name RETURN VARCHAR2,
 MEMBER PROCEDURE set_start_date(start_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_start_date RETURN TIMESTAMP WITH TIME ZONE,
 MEMBER PROCEDURE set_end_date(end_date IN TIMESTAMP WITH TIME ZONE),
 MEMBER FUNCTION get_end_date RETURN TIMESTAMP WITH TIME ZONE
);

CREATE OR REPLACE TYPE XS$ROLE_GRANT_LIST AS VARRAY(1000) OF XS$ROLE_GRANT_TYPE;

Summary of XS_PRINCIPAL Subprograms

Table 11-10 Summary of XS_PRINCIPAL Subprograms

Subprogram Description

CREATE_USER Procedure Creates an application user.

CREATE_ROLE Procedure Creates an application role.

CREATE_DYNAMIC_ROLE Procedure Creates a dynamic application role.

GRANT_ROLES Procedure Grants one or more application roles to an
application principal.

REVOKE_ROLES Procedure Revokes one or more roles from an application
principal.

ADD_PROXY_USER Procedure Adds a proxy user for a target application user.

REMOVE_PROXY_USERS Procedure Removes specified proxy user or all proxy users for
a target application user.

ADD_PROXY_TO_DBUSER Add a proxy application user to a database user.

REMOVE_PROXY_FROM_DBUSER
Procedure

Remove a proxy application user from a database
user.

SET_EFFECTIVE_DATES Procedure Sets or modifies the effective dates for an
application user or role.

SET_DYNAMIC_ROLE_DURATION
Procedure

Sets or modifies the duration, in minutes, for a
dynamic application role.

SET_DYNAMIC_ROLE_SCOPE
Procedure

Sets or modifies the scope of a dynamic application
role, such as REQUEST_SCOPE or SESSION_SCOPE.

ENABLE_BY_DEFAULT Procedure Enables or disables an application role.

ENABLE_ROLES_BY_DEFAULT
Procedure

Enables or disables all directly granted roles for the
specified user.

SET_USER_SCHEMA Procedure Sets the database schema for an application user.

SET_GUID Procedure Sets the GUID for an external user or role.

SET_ACL Procedure Sets the Real Application Security session privilege
for an application user or a dynamic role.

Chapter 11
XS_PRINCIPAL Package

11-65

Table 11-10 (Cont.) Summary of XS_PRINCIPAL Subprograms

Subprogram Description

SET_PROFILE Procedure Sets the application user's profile. This is a set of
resource limits and password parameters that
restrict database usage and database instance
resources for a Real Application Security application
user.

SET_USER_STATUS Procedure Sets or modifies the status of an application user
account, such as ACTIVE, INACTIVE, UNLOCK,
LOCKED, or EXPIRED.

SET_PASSWORD Procedure Sets or modifies the password for an application
user account.

SET_VERIFIER Procedure Sets or modifies the verifier for an application user
account.

SET_DESCRIPTION Procedure Sets the description string for an application user or
role.

DELETE_PRINCIPAL Procedure Drops an application user or role.

This section describes the following XS_PRINCIPAL subprograms:

CREATE_USER Procedure
The CREATE_USER procedure creates a new application user. You need the CREATE
USER system privilege to create an application user.

You can use the DBA_XS_USERS data dictionary view to get a list of all application
users.

Syntax

CREATE_USER (
 name IN VARCHAR2,
 schema IN VARCHAR2 := NULL,
 status IN PLS_INTEGER := ACTIVE,
 start_date IN TIMESTAMP WITH TIME ZONE := NULL,
 end_date IN TIMESTAMP WITH TIME ZONE := NULL,
 guid IN RAW := NULL,
 external_source IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 acl IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the application user to be created.

Chapter 11
XS_PRINCIPAL Package

11-66

Parameter Description

status The status of the user on creation. This can be one of the following
values:

ACTIVE, INACTIVE.

The default value is ACTIVE.

The values PASSWORDEXPIRED and LOCKED are deprecated
beginning with Oracle Database Release 12.1 (12.1.0.2).

schema The database schema to be associated with the user. This is
optional.

start_date The date from which the user account becomes effective. This is
optional.

end_date The date on which the user account becomes ineffective. This is
optional.

If an end_date is specified, then the start_date must also be
specified.

guid GUID of the user. This is valid for external users only.

external_source Name of the system that is the source for this user. This is optional.

description A description for the user account. This is optional.

acl The Real Application Security session privilege. The default value is
NULL meaning no ACL is set on the principal. The ACL must reside
in the SYS schema, or else an error is thrown.

The Real Application Security session privilege to be set on the
principal must follow the naming convention for Real Application
Security objects and must exist before this procedure is called.

The session privilege is enforced as per the ACL set on the Real
Application Security application user involved in the session
operation. For example, a create session operation requires the
caller to have the CREATE SESSION privilege in the ACL set on the
Real Application Security application user.

Principal-specific ACL grants take precedence over existing system-
level session privilege grants. A privilege check is first done in the
ACL associated with the principal and if it succeeds, the operation
proceeds. If the privilege check finds deny, the operation fails with an
insufficient privilege error. If neither grant nor deny is found, the
check is done in the system ACL associated with the SESSION_SC
security class and the operation succeeds or fails based on this
privilege check result.

Examples

The following example creates a user:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_USER('TEST1');
END;

The following example creates a user, and also specifies a schema and start date for
the user:

DECLARE
st_date TIMESTAMP WITH TIME ZONE;
BEGIN

Chapter 11
XS_PRINCIPAL Package

11-67

 st_date := TO_TIMESTAMP_TZ('2010-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 SYS.XS_PRINCIPAL.CREATE_USER(name=>'u2',
 schema=>'scott',
 start_date=>st_date);
END;

CREATE_ROLE Procedure
The CREATE_ROLE procedure creates a new application role. You need the CREATE
ROLE system privilege to create a regular application role.

You can use the DBA_XS_ROLES data dictionary view to get the list of application
roles together with their attributes, like start date and end date

Syntax

CREATE_ROLE (name IN VARCHAR2,
 enabled IN BOOLEAN := FALSE,
 start_date IN TIMESTAMP WITH TIME ZONE := NULL,
 end_date IN TIMESTAMP WITH TIME ZONE := NULL,
 guid IN RAW := NULL,
 external_source IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the application role to be created.

enabled Specifies whether the role is enabled on creation. The default value is
FALSE, which means that the role is disabled on creation.

start_date The date from which the role becomes effective. This is optional.

end_date The date on which the role becomes ineffective. This is optional.

If an end_date is specified, then the start_date must also be
specified.

guid GUID of the role. This is applicable for external roles only.

external_source The name of the system that is the source for this role. This is
optional.

description An optional description for the role.

Examples

The following example creates an application role, called hrmgr:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_ROLE('hrmgr');
END;

The following example creates an application role called hrrep. It also enables the
role, and assigns the current date as start date for the role.

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := SYSTIMESTAMP;

Chapter 11
XS_PRINCIPAL Package

11-68

 SYS.XS_PRINCIPAL.CREATE_ROLE(name=>'hrrep',
 enabled=>true,
 start_date=>st_date);
END;

CREATE_DYNAMIC_ROLE Procedure
The CREATE_DYNAMIC_ROLE procedure creates a new dynamic application role.
Dynamic application roles can be dynamically enabled or disabled by an application,
based on the criteria defined by the application. You need the CREATE ROLE system
privilege to create an dynamic application role.

You can use the DBA_XS_DYNAMIC_ROLES data dictionary view to get a list of all
dynamic application roles together with their attributes, like duration.

Syntax

CREATE_DYNAMIC_ROLE (
 name IN VARCHAR2,
 duration IN PLS_INTEGER := NULL,
 scope IN PLS_INTEGER := XS_PRINCIPAL.SESSION_SCOPE,
 description IN VARCHAR2 := NULL,
 acl IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the dynamic application role to be created.

duration The duration (in minutes) of the dynamic application role. This is an
optional attribute.

scope The scope attribute of the dynamic application role. The possible values
are SESSION_SCOPE and REQUEST_SCOPE. The default value is
XS_PRINCIPAL.SESSION_SCOPE.

description An optional description for the dynamic application role.

acl The Real Application Security session privilege. The default value is
NULL meaning no ACL is set on the principal. The ACL must reside in
the SYS schema, or else an error is thrown.

The Real Application Security session privilege to be set on the
principal must follow the naming convention for Real Application
Security objects and must exist before this procedure is called.

The session privilege is enforced as per the ACL set on the Real
Application Security dynamic role involved in the session operation. For
example, the attach operation with dynamic role requires the
ENABLE_DYNAMIC_ROLE privilege in the ACLs to be set on the dynamic
roles.

Principal-specific ACL grants take precedence over existing system-
level session privilege grants. A privilege check is first done in the ACL
associated with the principal and if it succeeds, the operation proceeds.
If the privilege check finds deny, the operation fails with an insufficient
privilege error. If neither grant nor deny is found, the check is done in
the system ACL associated with the SESSION_SC security class and the
operation succeeds or fails based on this privilege check result.

Chapter 11
XS_PRINCIPAL Package

11-69

Examples

The following example creates a dynamic application role, called sslrole:

BEGIN
 SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE('sslrole');
END;

The following example creates a dynamic application role called reprole. It also
specifies a duration of 100 minutes for the role, and chooses the request scope for the
role.

BEGIN
 SYS.XS_PRINCIPAL.CREATE_DYNAMIC_ROLE(name=>'reprole',
 duration=>100,
 scope=>XS_PRINCIPAL.REQUEST_SCOPE);
END;

GRANT_ROLES Procedure
The GRANT_ROLES procedure grants one or more application roles to an application
principal. You need the GRANT ANY ROLE system privilege to grant application roles.

You can use the DBA_XS_ROLE_GRANTS data dictionary view to get the list of all
role grants together with their details, like start date and end date.

Syntax

GRANT_ROLES (
grantee IN VARCHAR2,
role IN VARCHAR2,
start_date IN TIMESTAMP WITH TIME ZONE:= NULL,
end_date IN TIMESTAMP WITH TIME ZONE:= NULL,);

GRANT_ROLES (
grantee IN VARCHAR2,
role_list IN XS$ROLE_GRANT_LIST);

Parameters

Parameter Description

grantee The name of the principal to which the role is granted.

role The name of the role to be granted.

role_list The list of roles to be granted.

start_date The date on which the grant takes effect. This is an optional parameter.

end_date The date until which the grant is in effect. This is an optional parameter.

Examples

The following example grants the HRREP role to user SMAVRIS with a start date and an
end date specified:

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 end_date TIMESTAMP WITH TIME ZONE;

Chapter 11
XS_PRINCIPAL Package

11-70

BEGIN
 st_date := TO_TIMESTAMP_TZ('2010-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 end_date := TO_TIMESTAMP_Tz('2011-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 SYS.XS_PRINCIPAL.GRANT_ROLES('SMAVRIS', 'HRREP', st_date, end_date);
END;

The following example grants the HRREP and HRMGR roles to user SMAVRIS:

DECLARE
 rg_list XS$ROLE_GRANT_LIST;
BEGIN
 rg_list := XS$ROLE_GRANT_LIST(XS$ROLE_GRANT_TYPE('HRREP'),
 XS$ROLE_GRANT_TYPE('HRMGR'));

 SYS.XS_PRINCIPAL.GRANT_ROLES('SMAVRIS', rg_list);
END;

The following example shows how to grant the role XSCONNECT to user XSUSER. This
grant will allow user XSUSER using its password to connect to a database.

EXEC SYS.XS_PRINCIPAL.GRANT_ROLES('XSUSER', 'XSCONNECT');

REVOKE_ROLES Procedure
The REVOKE_ROLES procedure revokes the specified role(s) from the specified grantee.
If no roles are specified, then all application roles are revoked from the grantee.You
need the GRANT ANY ROLE system privilege to grant or revoke roles.

You can use the DBA_XS_ROLE_GRANTS data dictionary view to get the list of all
role grants together with their details, like start date and end date.

Syntax

REVOKE_ROLES (
 grantee IN VARCHAR2,
 role IN VARCHAR2);

REVOKE_ROLES (
 grantee IN VARCHAR2,
 role_list IN XS$NAME_LIST);

REVOKE_ROLES (
 grantee IN VARCHAR2);

Parameters

Parameter Description

grantee The application principal from whom the role(s) are to be revoked.

role The name of the application role that is to be revoked.

role_list The list of role names that are to be revoked.

Examples

The following example revokes the HRREP role from user SMAVRIS:

Chapter 11
XS_PRINCIPAL Package

11-71

BEGIN
 XS_PRINCIPAL.REVOKE_ROLES('SMAVRIS','HRREP');
END;

The following example revokes the HRREP and HRMGR roles from user SMAVRIS:

DECLARE
 role_list XS$NAME_LIST;
BEGIN
 role_list := XS$NAME_LIST('HRREP','HRMGR');
 SYS.XS_PRINCIPAL.REVOKE_ROLES('SMAVRIS', role_list);
END;

The following example revokes all granted roles from user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.REVOKE_ROLES('SMAVRIS');
END;

ADD_PROXY_USER Procedure
The ADD_PROXY_USER adds a target user for the specified application user. This allows
the application user to proxy as the target user. There are two signatures for this
procedure. The first signature allows you to specify a subset of roles of the target user
using the target_roles parameter that are to be assigned to the proxy user. For the
second signature there is no target_roles parameter, so all roles of the target user
are assigned to the proxy user.

You need the ALTER USER system privilege to add or remove a proxy user.

Syntax

ADD_PROXY_USER (
 target_user IN VARCHAR2,
 proxy_user IN VARCHAR2,
 target_roles IN XS$NAME_LIST);

ADD_PROXY_USER (
 target_user IN VARCHAR2,
 proxy_user IN VARCHAR2);

Parameters

Parameter Description

target_user The name of the target application user that can be proxied to.

proxy_user The name of the proxy application user.

target_roles A list of target user roles that can be proxied by the proxy user. This
parameter is mandatory. If you pass an explicit NULL value, then this
would be a case of configuring the proxy user without any role of the
target user; otherwise, the proxy_user parameter uses the value you
specify for the target_roles parameter.

Examples

The following example enables user DJONES to proxy as target user SMAVRIS. The
target roles granted to DJONES are HRREP and HRMGR.

Chapter 11
XS_PRINCIPAL Package

11-72

DECLARE
 pxy_roles XS$NAME_LIST;
BEGIN
 pxy_roles := XS$NAME_LIST('HRREP','HRMGR');
 SYS.XS_PRINCIPAL.ADD_PROXY_USER('SMAVRIS','DJONES', pxy_roles);
END;

The following example passes an explicit NULL value for the target role; in other words,
it assigns no roles of the target user 'SMAVRIS' to the proxy user 'DJONES'.

BEGIN
 SYS.XS_PRINCIPAL.ADD_PROXY_USER('SMAVRIS','DJONES', NULL);
END;

The following example assigns all roles of target user 'SMAVRIS' to proxy user
'DJONES'.

BEGIN
 SYS.XS_PRINCIPAL.ADD_PROXY_USER('SMAVRIS','DJONES');
END;

REMOVE_PROXY_USERS Procedure
The REMOVE_PROXY_USERS procedure disassociates one or all proxy users for a target
application user. The associated proxy roles are automatically removed for the proxy
users.

You need the ALTER USER system privilege to add or remove a proxy user.

Syntax

REMOVE_PROXY_USERS (
 target_user IN VARCHAR2);

REMOVE_PROXY_USERS (
 target_user IN VARCHAR2,
 proxy_user IN VARCHAR2);

Parameters

Parameter Description

target_user The target application user whose proxies are to be disassociated.

proxy_user The proxy application user that needs to be disassociated from the
target user.

Examples

The following example removes all proxy users for target user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.REMOVE_PROXY_USERS('SMAVRIS');
END;

The following example disassociates the proxy user DJONES from the target user
SMAVRIS:

Chapter 11
XS_PRINCIPAL Package

11-73

BEGIN
 SYS.XS_PRINCIPAL.REMOVE_PROXY_USERS('SMAVRIS','DJONES');
END;

ADD_PROXY_TO_DBUSER
The ADD_PROXY_TO_DBUSER adds the specified target proxy application user to the
specified database user. The application user must be a direct logon user. This allows
the application user to proxy as the target database user. By default, all roles assigned
to the target user can be used by the proxy user. Similar to Oracle Database, the
default roles of the target database users would be enabled after connection. Other
roles assigned to the target database user can be set by using the SET ROLE
statement.

You need the ALTER USER system privilege to add a proxy user to a database user.

Syntax

ADD_PROXY_TO_DBUSER (
 database_user IN VARCHAR2,
 proxy_user IN VARCHAR2,
 is_external IN BOOLEAN := FALSE);

Parameters

Parameter Description

database_user The name of the target database user that can be proxied to.

proxy_user The name of the proxy application user.

is_external The parameter to indicate whether the user is an external user or a
regular Real Application Security application user.

Examples

The following example enables application user DJONES to proxy as target database
user SMAVRIS.

BEGIN
 SYS.XS_PRINCIPAL.ADD_PROXY_TO_DBUSER('SMAVRIS','DJONES', TRUE);
END;

REMOVE_PROXY_FROM_DBUSER Procedure
The REMOVE_PROXY_FROM_DBUSER procedure disassociates a proxy application user
from a database user. The associated proxy roles are automatically removed from the
application user.

You need the ALTER USER system privilege to remove a proxy user from a database
user.

Syntax

REMOVE_PROXY_FROM_DBUSER (
 database_user IN VARCHAR2,
 proxy_user IN VARCHAR2);

Chapter 11
XS_PRINCIPAL Package

11-74

Parameters

Parameter Description

database_user The target database user whose proxies are to be disassociated.

proxy_user The proxy application user that needs to be disassociated from the
target database user.

Examples

The following example disassociates the proxy user DJONES from the target database
user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.REMOVE_PROXY_FROM_DBUSER('SMAVRIS','DJONES');
END;

SET_EFFECTIVE_DATES Procedure
The SET_EFFECTIVE_DATES procedure sets or modifies the effective dates for an
application user or role. If the start_date and end_date values are specified as NULL
by default, then the application user is not currently effective, so the session for the
particular application user cannot be created.

You need the ALTER USER system privilege to run this procedure for an application
user. You need the ALTER ANY ROLE system privilege to run this procedure for an
application role.

Syntax

SET_EFFECTIVE_DATES (
 principal IN VARCHAR2,
 start_date IN TIMESTAMP WITH TIME ZONE:= NULL,
 end_date IN TIMESTAMP WITH TIME ZONE:= NULL);

Parameters

Parameter Description

principal The name of the application user or role for which effective dates are to
be set.

start_date The start date of the effective dates period.

end_date The end date of the effective dates period.

Examples

The following example sets the effective dates for user DJONES.

DECLARE
 st_date TIMESTAMP WITH TIME ZONE;
 end_date TIMESTAMP WITH TIME ZONE;
BEGIN
 st_date := TO_TIMESTAMP_TZ('2010-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');
 end_date := TO_TIMESTAMP_Tz('2011-06-18 11:00:00 -5:00','YYYY-MM-DD HH:MI:SS
 TZH:TZM');

Chapter 11
XS_PRINCIPAL Package

11-75

 SYS.XS_PRINCIPAL.SET_EFFECTIVE_DATES(principal=>'DJONES',
 start_date=>st_date,end_date=>end_date);
END;

SET_DYNAMIC_ROLE_DURATION Procedure
The SET_DYNAMIC_ROLE_DURATION procedure sets or modifies the duration for a
dynamic application role. The duration is specified in minutes.

You need the ALTER ANY ROLE system privilege to modify a role.

Syntax

SET_DYNAMIC_ROLE_DURATION (
 role IN VARCHAR2,
 duration IN PLS_INTEGER);

Parameters

Parameter Description

role The name of the dynamic application role.

duration The duration of the dynamic application role in minutes. This cannot be
a negative value.

Examples

The following example sets the duration of the reprole dynamic application role to 60
minutes.

BEGIN
 SYS.XS_PRINCIPAL.SET_DYNAMIC_ROLE_DURATION('reprole',60);
END;

SET_DYNAMIC_ROLE_SCOPE Procedure
The SET_DYNAMIC_ROLE_SCOPE procedure sets or modifies the scope of a dynamic
application role. The session (SESSION_SCOPE) or request (REQUEST_SCOPE) scopes can
be chosen.

You need the ALTER ANY ROLE system privilege to modify a role.

Syntax

SET_DYNAMIC_ROLE_SCOPE (
 role IN VARCHAR2,
 scope IN PLS_INTEGER);

Parameters

Parameter Description

role The name of the dynamic application role.

scope The scope of the dynamic application role to be set. The allowed values
are XS_PRINCIPAL.REQUEST_SCOPE and
XS_PRINCIPAL.SESSION_SCOPE.

Chapter 11
XS_PRINCIPAL Package

11-76

Examples

The following example sets the scope of the reprole dynamic application role to
request scope:

begin
 SYS.XS_PRINCIPAL.SET_DYNAMIC_ROLE_SCOPE('reprole',XS_PRINCIPAL.REQUEST_SCOPE);
end;

ENABLE_BY_DEFAULT Procedure
The ENABLE_BY_DEFAULT procedure enables or disables a regular application role.

If enabled, then the application role is automatically enabled for the principal to which it
is granted. If disabled, then the privileges associated with the application role are not
enabled even if the application role is granted to a principal.

You need the ALTER ANY ROLE system privilege to modify an application role.

Syntax

ENABLE_BY_DEFAULT (
 role IN VARCHAR2,
 enabled IN BOOLEAN := TRUE);

Parameters

Parameter Description

role The name of the regular application role.

enabled The enabled attribute of the application role. Setting this to TRUE
marks the application role as being enabled by default. The default
value is TRUE.

Examples

The following example sets the enabled attribute for the HRREP application role to TRUE:

BEGIN
 SYS.XS_PRINCIPAL.ENABLE_BY_DEFAULT('HRREP',TRUE);
END;

ENABLE_ROLES_BY_DEFAULT Procedure
The ENABLE_ROLES_BY_DEFAULT procedure enables or disables all application roles that
have been directly granted to an application user.

You need the ALTER USER system privilege to run this procedure for an application
user.

Syntax

ENABLE_ROLES_BY_DEFAULT (
 user IN VARCHAR2,
 enabled IN BOOLEAN := TRUE);

Chapter 11
XS_PRINCIPAL Package

11-77

Parameters

Parameter Description

user The name of the application user.

enabled The enabled attribute for all application roles that have been directly
granted to the application user.

Setting the enabled attribute to TRUE enables all directly granted
application roles for the application user. The default value is TRUE.

Setting the enabled attribute to FALSE disables all directly granted
application roles for the application user.

Examples

The following example enables all directly granted roles for application user SMAVRIS:

BEGIN
 SYS.XS_PRINCIPAL.ENABLE_ROLES_BY_DEFAULT('SMAVRIS',TRUE);
END;

SET_USER_SCHEMA Procedure
The SET_USER_SCHEMA procedure sets the database schema for an application user.

You need the ALTER USER system privilege to run this procedure for an application
user.

Syntax

SET_USER_SCHEMA (
 user IN VARCHAR2,
 schema IN VARCHAR2);

Parameters

Parameter Description

user The name of the application user.

schema The name of the database schema to be associated with the user.
Setting this to NULL removes any schema association.

Examples

The following example associates the HR schema with user DJONES.

BEGIN
 SYS.XS_PRINCIPAL.SET_USER_SCHEMA('DJONES','HR');
END;

SET_GUID Procedure
The SET_GUID procedure sets the GUID for a principal. The principal must be an
external user or role, and the current GUID must be NULL.

Chapter 11
XS_PRINCIPAL Package

11-78

You need the ALTER USER system privilege to run this procedure for an application
user. You need the ALTER ANY ROLE system privilege to run this procedure for an
application role.

Note:

The external_source attribute for the user must have been set for
SET_GUID to work.

Syntax

SET_GUID (
 principal IN VARCHAR2,
 guid IN RAW);

Parameters

Parameter Description

principal The name of the external user or role.

guid The GUID for the external user or role.

Examples

The following example sets a GUID for user Alex:

BEGIN
 SYS.XS_PRINCIPAL.SET_GUID('ALEX','7b6cb3a98f8a4e20ac31a37419cc7fa3');
END;

SET_ACL Procedure

Purpose

The SET_ACL procedure sets an ACL on the specified application user or dynamic role.

This procedure requires the caller to have the Real Application Security PROVISION
privilege as the least privilege. Users with database ALTER USER privilege can also call
the procedure if the principal is an application user. Users with the database role ALTER
ROLE privilege can also call this procedure if the principal is a dynamic role.

Syntax

SET_ACL(principal IN VARCHAR2,
 acl IN VARCHAR2);

Parameters

Parameter Description

principal The application user or dynamic role to which
the ACL is to be set.

Chapter 11
XS_PRINCIPAL Package

11-79

Parameter Description

acl The Real Application Security session
privilege.

Usage Notes

The ACLs must be created in the SYS schema.

An ACL set on an application user or dynamic role overrides a system-wide ACL.

The session privilege will be enforced as per the ACL set on Real Application Security
application user or dynamic role involved in the session operation. For example, a
create session operation requires the caller to have the CREATE_SESSION privilege in
the ACL set on the Real Application Security application user or the attach operation
with dynamic role requires the ENABLE_DYNAMIC_ROLE privilege in the ACLs to be set on
the dynamic roles.

Principal-specific ACL grants take precedence over existing system-level session
privilege grants. A privilege check is first done in the ACL associated with the principal
and if it succeeds, the operation proceeds. If the privilege check finds deny, the
operation fails with an insufficient privilege error. If neither grant nor deny is found, the
check is done in the system ACL associated with the SESSION_SC security class and
the operation succeeds or fails based on this privilege check result.

Examples

Example 11-1 Set the ACL Privilege CREATE_SESSION on Application User
TEST1

The following example sets the ACL privilege CREATE_SESSION on the specified
application user test1.

BEGIN
 SYS.XS_PRINCIPAL.SET_ACL('test1','CREATE_SESSION');
END;

SET_PROFILE Procedure
The SET_PROFILE procedure sets the application user's profile. The profile is a set of
resource limits and password parameters that restrict database usage and database
instance resources for a Real Application Security application user. Both the
application user and the profile must be existing entities.

The user executing this procedure must have the ALTER_USER privilege.

If a profile that is assigned to an application user is dropped using the cascade option,
then the default profile would automatically become activated for that user.

Syntax

SET_PROFILE (
 user IN VARCHAR2,
 profile IN VARCHAR2);

Chapter 11
XS_PRINCIPAL Package

11-80

Parameters

Parameter Description

user The name of the Real Application Security application user. This must
be an existing application user.

profile The name of the profile.

Examples

The following example creates a profile named prof and then sets the profile named
prof to an application user named xsuser.

CREATE PROFILE prof LIMIT PASSWORD_REUSE_TIME 1/1440 PASSWORD_REUSE_MAX 3
PASSWORD_VERIFY_FUNCTION Verify_Pass;

BEGIN
 SYS.XS_PRINCIPAL.SET_PROFILE('xsuser','prof');
END;

SET_USER_STATUS Procedure
The SET_USER_STATUS procedure sets or modifies the status of an application user
account.

You need the ALTER_USER privilege to run this procedure for an application user.

Syntax

SET_USER_STATUS (
 user IN VARCHAR2,
 status IN PLS_INTEGER);

Parameters

Parameter Description

user The name of the user account whose status needs to be set or
updated.

Chapter 11
XS_PRINCIPAL Package

11-81

Parameter Description

status The new status of the Real Application Security user account. The
status values can be divided into several classes:

• ACTIVE and INACTIVE - These two account status values will
affect the user account's ability to create and attach to an
application session.

When set to ACTIVE, it allows the application user to use a direct
login account to log into the database with a valid password. The
application user is allowed to create and attach to an application
session if the account has the required application privileges.

When set to INACTIVE, the application user cannot use a direct
login account to log into the database even with a valid password
and can not create and attach to an application session.

• UNLOCK, LOCKED, or EXPIRED - These status values will be
checked only for the direct login Real Application Security
application user.

When set to UNLOCK, it opens the application user account when
the account is LOCKED and allows the application user to use a
direct login account to log into the database with a valid password.

When set to LOCKED, it locks the account of the application user.
This means user connections using a direct login account will not
be allowed even with a valid password. Provided that the user
account is ACTIVE, a direct login will not succeed when the
account is locked, but the user can create and attach to an
application session.

When set to EXPIRED, it expires the account of the application
user. This means user connections using a direct login account will
be allowed for valid passwords; however, the password must be
changed at the time of logon.

• PASSWORDEXPIRED (Deprecated) - This status value is deprecated
beginning with Release 1 (12.1.0.2).

If you try to pass any other value for the parameter status, an
ORA-46152: XS Security - invalid user status specified
error is returned.

Examples

The following example sets the user status to LOCKED for user DJONES.

BEGIN
 SYS.XS_PRINCIPAL.SET_USER_STATUS('DJONES',XS_PRINCIPAL.LOCKED);
END;

SET_PASSWORD Procedure
The SET_PASSWORD procedure sets or modifies the password for an application user
account. When you use the SET_PASSWORD procedure, it creates a verifier for you
based on the password and the type parameter and then inserts the verifier and the
value of the type parameter into the dictionary table.

A direct login Real Application Security user can change his or her own password by
providing its value using the oldpass parameter. If value of the old password is
incorrect, then the failed login count is incremented with each attempt, returning an

Chapter 11
XS_PRINCIPAL Package

11-82

ORA-28008: invalid old password error. The new password is not set until the old
supplied password is correct.

You need the ALTER_USER privilege to run this procedure for an application user or if
you are changing the password of other Real Application Security users.

Native Real Application Security users synchronized from external ID stores are not
allowed to change their own password. These users must change their password in
the originating ID store. For example, if the Oracle Internet Directory 11g Release 1
(11.1.1) is the external store, for end-user self-service use the Oracle Identity Self
Service interface provided by Oracle Identity Manager to manage your passwords.
See Fusion Middleware Performing Self Service Tasks with Oracle Identity Manager
for more information. You should contact your security administrator to determine if
native Real Application Security users are synchronized from an external ID store, and
if so, whether password management is provided in your directory server environment
for end-user self-service.

The SET_PASSWORD operation and the SQL*Plus PASSWORD command are both blocked
on the logical standby database.

Syntax

SET_PASSWORD (
 user IN VARCHAR2,
 password IN VARCHAR2,
 type IN PLS_INTEGER := XS_SHA512,
 opassword IN VARCHAR2 :=NULL);

Parameters

Parameter Description

user The name of the application user account for which the password is to
be set.

password The password to be set.

type The verifier type to be used for the password. The default value is
XS_SHA512. The verifier type must be one of the following types:

XS_SHA512, XS_SALTED_SHA1

opassword The old password. This parameter is required if the Real Application
Security user is changing his or her own password. If not provided, then
the user must have the required privilege to change his or her own
password.

Examples

The following example sets a password for application user SMAVRIS. It also specifies
the XS_SHA512 verifier type for the password.

BEGIN
 SYS.XS_PRINCIPAL.SET_PASSWORD('SMAVRIS','2Hrd2Guess',XS_PRINCIPAL.XS_SHA512);
END;

SET_VERIFIER Procedure
The SET_VERIFIER procedure sets or modifies the verifier for an application user
account. When you use the SET_VERIFIER procedure, the procedure directly inserts

Chapter 11
XS_PRINCIPAL Package

11-83

the verifier and the value of the type parameter into the dictionary table,
XS$VERIFIERS. This enables administrators to migrate users into Real Application
Security with knowledge of the verifier and not the password.

You need the ALTER_USER privilege to run this procedure for an application user.

The SET_VERIFIER operation and the SQL*Plus PASSWORD command are both blocked
on the logical standby database.

Syntax

set_verifier (
 user IN VARCHAR2,
 verifier IN VARCHAR2,
 type IN PLS_INTEGER := XS_SHA512);

Parameters

Parameter Description

user The name of the application user for whom the verifier is set.

verifier A character string to be used as the verifier.

type The verifier type to be used. This can be one of the following:

XS_SHA512, XS_SALTED_SHA1

Examples

Assume that a user by the name LWUSER3 is created and the password is set with a
verifier type of XS_SALTED_SHA1.

Next, query the view DBA_XS_OBJECTS to obtain the ID value for user LWUSER3.

SQL> column name format A10;
SQL> column owner format A6;
SQL> select NAME, OWNER, ID, TYPE, STATUS from DBA_XS_OBJECTS where NAME
= 'LWUSER3';

NAME OWNER ID TYPE STATUS
---------- ------ ---------- ------------------ --------
LWUSER3 SYS 2147493770 PRINCIPAL VALID

Next, query the XS$VERIFIERS dictionary table for user LWUSER3 whose ID is
2147493770.

SQL> column user# format 9999999999;
SQL> column type# format 99;
SQL> column verifier format A62;
SQL> select USER#, VERIFIER, TYPE# from XS$VERIFIERS where USER# =
'2147493770';

 USER# VERIFIER
TYPE#
----------- --

Chapter 11
XS_PRINCIPAL Package

11-84

 2147493770 S:
14DC0F5ABB72FC869549B1F845C548E0BEF7B863A116DB24DFAE22F0501E 1

The value of the verifier includes its type as value “S” followed by a colon (:) to denote
that it is a verifier type of XS_SALTED_SHA1, which is also indicated as being of type# 1.

Using the entire verifier value including “S:”, set the verifier for user LWUSER3.

BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser3','S:
14DC0F5ABB72FC869549B1F845C548E0BEF7B863A116DB24DFAE22F0501E',
XS_PRINCIPAL.XS_SALTED_SHA1);
END;
/ 2 3 4 5

PL/SQL procedure successfully completed.

For this procedure to complete successfully, both the verifier value and its type must
match the information in the VERIFIER column of the XS$VERIFIERS dictionary table for
the user whose verifier is being set. Note that when you change the password for an
application user, it automatically changes its verifier value with the option of changing
its verifier type.

The previous example set the verifier to its same exact value to show the steps
involved. You have the option to set the verifier for a password to any verifier value
that displays for an application user when you query the XS$VERIFIERS dictionary table
as long as the verifier value matches the verifier type that you set. For example, if you
wanted to change the verifier value and the verifier type to XS_SHA512, do the following.

SQL> BEGIN
SYS.XS_PRINCIPAL.SET_VERIFIER('lwuser3','T:
9BA95FEF2C2630A2BAACF2E7C5E41B0D50CDC7B0B6
0C88AD4FE81F8155D002F99EEAF9D95477E4749870C67FDE870E154ED17809C359777F979E2
69010823FB
981B2A998915EB1439FE3C6C1542A239C',
XS_PRINCIPAL.XS_SHA512);
END;
/ 2 3 4

PL/SQL procedure successfully completed.

Note that this is the same verifier value and verifier type that was set for application
user LWUSER1 as shown in Setting a Password Verifier for Direct Application User
Accounts.

SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure is used to set the description for an application
principal.

You need the ALTER USER system privilege to run this procedure for an application
user. You need the ALTER ANY ROLE system privilege to run this procedure for an
application role.

Chapter 11
XS_PRINCIPAL Package

11-85

Syntax

SET_DESCRIPTION (principal IN VARCHAR2, description IN VARCHAR2);

Parameters

Parameter Description

principal The name of the principal for which the description is set.

description A descriptive string about the principal.

Examples

The following example sets a description for the application role HRREP:

BEGIN
 SYS.XS_PRINCIPAL.SET_DESCRIPTION('HRREP','HR Representative role');
END;

DELETE_PRINCIPAL Procedure
The DELETE_PRINCIPAL procedure drops an application user or application role.

You need the DROP USER system privilege to run this procedure for an application user.
You need the DROP ANY ROLE system privilege to run this procedure for an application
role.

Syntax

delete_principal (
 principal IN VARCHAR2,
 delete_option IN PLS_INTEGER:=XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

principal The name of the application user or application role that is to be
deleted.

delete_option The delete option to use. The following options are available:

• DEFAULT_OPTION:

The default option allows deleting a principal only if it is not
referenced elsewhere. If there are other entities that reference the
principal, then the principal cannot be deleted.

For example, the delete operation fails if you try to delete an
application role that is granted to a principal.

• CASCADE_OPTION:

The cascade option deletes the application user or application role
together with any references to it.The user deleting the application
user or application role must have privileges to delete these
references as well.

• ALLOW_INCONSISTENCIES_OPTION:

The allow inconsistencies option lets you delete the entity even if
other entities have late binding references to it. If the entity is part
of an early dependency, then the delete fails and an error is raised.

Chapter 11
XS_PRINCIPAL Package

11-86

Examples

The following example deletes the user SMAVRIS using the DEFAULT_OPTION:

BEGIN
 SYS.XS_PRINCIPAL.DELETE_PRINCIPAL('SMAVRIS');
END;

XS_SECURITY_CLASS Package
The XS_SECURITY_CLASS package includes procedures to create, manage, and delete
security classes and their privileges. The package also includes procedures for
managing security class inheritance.

This section includes the following topics:

• Security Model for the XS_SECURITY_CLASS Package

• Summary of XS_SECURITY_CLASS Subprograms

Security Model for the XS_SECURITY_CLASS Package
The XS_SECURITY_CLASS package is created under the SYS schema. The DBA role is
granted the ADMIN_ANY_SEC_POLICY, which allows it to administer schema objects like
ACLs, security classes, and security policies across all schemas.

Users can administer schema objects in their own schema if they have been granted
the RESOURCE role for the schema. The RESOURCE role and the XS_RESOURCE application
role include the ADMIN_SEC_POLICY privilege, required to administer schema objects in
the schema as well as administering the policy artifacts within the granted schema to
achieve policy management within an application.

Users can administer policy enforcement on the schema if they have been granted the
APPLY_SEC_POLICY privilege. With this privilege, the user can administer policy
enforcement within granted schemas to achieve policy management within an
application.

Summary of XS_SECURITY_CLASS Subprograms

Table 11-11 Summary of XS_SECURITY_CLASS Subprograms

Subprogram Description

CREATE_SECURITY_CLASS Procedure Creates a new security class.

ADD_PARENTS Procedure Adds one or more parent security classes for the specified
security class.

REMOVE_PARENTS Procedure Removes one or more parent security classes for the specified
security class.

ADD_PRIVILEGES Procedure Adds one or more privileges to the specified security class.

REMOVE_PRIVILEGES Procedure Removes one or more privileges for the specified security
class.

ADD_IMPLIED_PRIVILEGES Procedure Adds one or more implied privileges for the specified
aggregate privilege.

Chapter 11
XS_SECURITY_CLASS Package

11-87

Table 11-11 (Cont.) Summary of XS_SECURITY_CLASS Subprograms

Subprogram Description

REMOVE_IMPLIED_PRIVILEGES Procedure Removes one or more implied privileges from an aggregate
privilege.

SET_DESCRIPTION Procedure Sets a description string for the specified security class.

DELETE_SECURITY_CLASS Procedure Deletes the specified security class.

This section describes the following XS_SECURITY_CLASS subprograms:

CREATE_SECURITY_CLASS Procedure
The CREATE_SECURITY_CLASS creates a new security class.

Syntax

XS_SECURITY_CLASS.CREATE_SECURITY_CLASS (
 name IN VARCHAR2,
 priv_list IN XS$PRIVILEGE_LIST,
 parent_list IN XS$NAME_LIST := NULL,
 description IN VARCHAR2 := NULL);

Parameters

Parameter Description

name The name of the security class to be created.

The name is schema qualified, for example, SCOTT.SC1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as SC1, and the
current schema is SCOTT, it would resolve to SCOTT.SC1.

priv_list The list of privileges to include in the security class.

parent_list The list of parent security classes from which the security class is inherited.
This is optional.

description An optional description for the security class.

Examples

The following example creates a security class called HRPRIVS. The security class
includes a set of privileges defined in priv_list. The security class uses the DML class
as its parent security class.

DECLARE
 pr_list XS$PRIVILEGE_LIST;
BEGIN
 pr_list :=XS$PRIVILEGE_LIST(
 XS$PRIVILEGE(name=>'VIEW_SENSITIVE_INFO'),
 XS$PRIVILEGE(name=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST
 ('"UPDATE"', '"DELETE"', '"INSERT"')));

 SYS.XS_SECURITY_CLASS.CREATE_SECURITY_CLASS(
 name=>'HRPRIVS',

Chapter 11
XS_SECURITY_CLASS Package

11-88

 priv_list=>pr_list,
 parent_list=>XS$NAME_LIST('DML'));
END;

ADD_PARENTS Procedure
The ADD_PARENTS procedure adds one or more parent security classes for the specified
security class.

Syntax

XS_SECURITY_CLASS.ADD_PARENTS (
 sec_class IN VARCHAR2,
 parent IN VARCHAR2);

XS_SECURITY_CLASS.ADD_PARENTS (
 sec_class IN VARCHAR2,
 parent_list IN XS$NAME_LIST);

Parameters

Parameter Description

sec_class The name of the security class for which parent classes are to be added.

The name is schema qualified, for example, SCOTT.SC1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as SC1, and the
current schema is SCOTT, it would resolve to SCOTT.SC1.

parent The name of the parent security class to be added.

parent_list The list of parent classes to be added.

Examples

The following example adds the parent security class GENPRIVS to the HRPRIVS security
class.

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PARENTS('HRPRIVS','GENPRIVS');
END;

REMOVE_PARENTS Procedure
The REMOVE_PARENTS procedure removes one or more parent classes for the specified
security class.

Syntax

XS_SECURITY_CLASS.REMOVE_PARENTS (
 sec_class IN VARCHAR2);

XS_SECURITY_CLASS.REMOVE_PARENTS (
 sec_class IN VARCHAR2,
 parent IN VARCHAR2);

XS_SECURITY_CLASS.REMOVE_PARENTS (
 sec_class IN VARCHAR2,
 parent_list IN XS$NAME_LIST);

Chapter 11
XS_SECURITY_CLASS Package

11-89

Parameters

Parameter Description

sec_class The name of the security class whose parent classes are to be removed.

The name is schema qualified, for example, SCOTT.SC1. When the schema
part of the name is missing, the current session schema is assumed. For
example, in this same example, if the name is specified as SC1, and the
current schema is SCOTT, it would resolve to SCOTT.SC1.

parent The parent security class that is to be removed.

parent_list The list of parent security classes that are to be removed.

Examples

The following example removes the parent security class GENPRIVS from the HRPRIVS
security class.

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PARENTS('HRPRIVS','GENPRIVS');
END;

ADD_PRIVILEGES Procedure
The ADD_PRIVILEGES procedure adds one or more privileges to a security class.

Syntax

XS_SECURITY_CLASS.ADD_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv_list IN XS$NAME_LIST := NULL,
 description IN VARCHAR2 := NULL);

XS_SECURITY_CLASS.ADD_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv_list IN XS$PRIVILEGE_LIST);

Parameters

Parameter Description

sec_class The name of the security class to which the privileges are to be
added.

The name is schema qualified, for example, SCOTT.SC1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is
specified as SC1, and the current schema is SCOTT, it would resolve
to SCOTT.SC1.

priv The name of the privilege to be added.

priv_list The list of privileges to be added.

implied_priv_list An optional list of implied privileges to be added.

description An optional description of the privilege being added.

Chapter 11
XS_SECURITY_CLASS Package

11-90

Examples

The following example adds an aggregate privilege called UPDATE_INFO to the HRPRIVS
security class. The aggregate privilege contains the implied privileges, UPDATE, DELETE,
and INSERT.

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_PRIVILEGES(sec_class=>'HRPRIVS',priv=>'UPDATE_INFO',
 implied_priv_list=>XS$NAME_LIST('"UPDATE"',
 '"DELETE"', '"INSERT"'));
END;

REMOVE_PRIVILEGES Procedure
The REMOVE_PRIVILEGES procedure removes one or more privileges from the specified
security class. If no privilege name or list is specified, then all privileges are removed
from the specified security class.

Syntax

XS_SECURITY_CLASS.REMOVE_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2);

XS_SECURITY_CLASS.REMOVE_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv_list IN XS$NAME_LIST);

XS_SECURITY_CLASS.REMOVE_PRIVILEGES (
 sec_class IN VARCHAR2);

Parameters

Parameter Description

sec_class The name of the security class for which the privileges are to be
removed.

The name is schema qualified, for example, SCOTT.SC1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
SC1, and the current schema is SCOTT, it would resolve to SCOTT.SC1.

priv The name of the privilege to be removed.

priv_list The list of privileges to be removed.

Examples

The following example removes the UPDATE_INFO privilege from the HRPRIVS security
class.

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS','UPDATE_INFO');
END;

The following example removes all privileges from the HRPRIVS security class.

Chapter 11
XS_SECURITY_CLASS Package

11-91

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_PRIVILEGES('HRPRIVS');
END;

ADD_IMPLIED_PRIVILEGES Procedure
The ADD_IMPLIED_PRIVILEGES procedure adds one or more implied privileges to an
aggregate privilege.

Syntax

XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv IN VARCHAR2);

XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv_list IN XS$NAME_LIST);

Parameters

Parameter Description

sec_class The name of the security class to which the privileges are to be
added.

The name is schema qualified, for example, SCOTT.SC1. When
the schema part of the name is missing, the current session
schema is assumed. For example, in this same example, if the
name is specified as SC1, and the current schema is SCOTT, it
would resolve to SCOTT.SC1.

priv Name of the aggregate privilege for which the implied privileges
are to be added.

implied_priv The implied privilege to be added.

implied_priv_list A list of implied privileges to be added for the aggregate privilege.

Examples

The following example adds a list of implied privileges for the aggregate privilege
UPDATE_INFO to the HRPRIVS security class:

BEGIN
 SYS.XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES(sec_class=>'HRPRIVS',
priv=>'UPDATE_INFO', implied_priv_list=>XS$NAME_LIST('"UPDATE"', '"DELETE"',
'"INSERT"'));
END;

REMOVE_IMPLIED_PRIVILEGES Procedure
The REMOVE_IMPLIED_PRIVILEGES procedure removes the specified implied privileges
from an aggregate privilege. If no implied privileges are specified, then all implied
privileges are removed from the aggregate privilege.

Chapter 11
XS_SECURITY_CLASS Package

11-92

Syntax

XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv IN VARCHAR2);

XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2,
 implied_priv_list IN XS$NAME_LIST);

XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES (
 sec_class IN VARCHAR2,
 priv IN VARCHAR2);

Parameters

Parameter Description

sec_class The name of the security class for which the privileges are to be
removed.

The name is schema qualified, for example, SCOTT.SC1. When
the schema part of the name is missing, the current session
schema is assumed. For example, in this same example, if the
name is specified as SC1, and the current schema is SCOTT, it
would resolve to SCOTT.SC1.

priv The name of the aggregate privilege from which the implied
privileges are to be removed.

implied_priv The implied privilege to be removed from the aggregate privilege.

implied_priv_list The list of implied privileges to be removed from the aggregate
privilege.

Examples

The following example removes the implicit privilege DELETE from the aggregate
privilege UPDATE_INFO from the HRPRIVS security class:

BEGIN

SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('HRPRIVS','UPDATE_INFO','"DELETE"');
END;

The following example removes all implicit privileges from the aggregate privilege
UPDATE_INFO from the HRPRIVS security class.

BEGIN
 SYS.XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES('HRPRIVS','UPDATE_INFO');
END;

SET_DESCRIPTION Procedure
The SET_DESCRIPTION procedure sets a description string for the specified security
class.

Chapter 11
XS_SECURITY_CLASS Package

11-93

Syntax

XS_SECURITY_CLASS.SET_DESCRIPTION (
 sec_class IN VARCHAR2,
 description IN VARCHAR2);

Parameters

Parameter Description

sec_class The name of the security class for which the description is to be set.

The name is schema qualified, for example, SCOTT.SC1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
SC1, and the current schema is SCOTT, it would resolve to SCOTT.SC1.

description A description string for the specified security class.

Examples

The following example sets a description string for the HRPRIVS security class:

BEGIN
 SYS.XS_SECURITY_CLASS.SET_DESCRIPTION(
 'HRPRIVS','Contains privileges required to manage HR data');
END;

DELETE_SECURITY_CLASS Procedure
The DELETE_SECURITY_CLASS procedure deletes the specified security class.

Syntax

XS_SECURITY_CLASS.DELETE_SECURITY_CLASS (
 sec_class IN VARCHAR2,
 delete_option IN NUMBER:=XS_ADMIN_UTIL.DEFAULT_OPTION);

Parameters

Parameter Description

sec_class The name of the security class to be deleted.

The name is schema qualified, for example, SCOTT.SC1. When the
schema part of the name is missing, the current session schema is
assumed. For example, in this same example, if the name is specified as
SC1, and the current schema is SCOTT, it would resolve to SCOTT.SC1.

Chapter 11
XS_SECURITY_CLASS Package

11-94

Parameter Description

delete_option The delete option to use. The following options are available:

• DEFAULT_OPTION:

The default option allows deleting a security class only if it is not
referenced elsewhere. If there are other entities that reference the
security class, then the security class cannot be deleted.

• CASCADE_OPTION:

The cascade option deletes the security class together with any
references to it.The user deleting the security class must have
privileges to delete these references as well.

• ALLOW_INCONSISTENCIES_OPTION:

The allow inconsistencies option lets you delete the entity even if
other entities have late binding references to it.

Examples

The following example deletes the HRPRIVS security class using the default option:

BEGIN

SYS.XS_SECURITY_CLASS.DELETE_SECURITY_CLASS('HRPRIVS',XS_ADMIN_UTIL.DEFAULT_OPTION);
END;

Chapter 11
XS_SECURITY_CLASS Package

11-95

12
Real Application Security HR Demo

This chapter describes the following topics:

• Overview of the Security HR Demo

• What Each Script Does

• Setting Up the Security HR Demo Components

• Running the Security HR Demo Using Direct Logon

• Running the Security HR Demo Attached to a Real Application Security Session

• Running the Security HR Demo Cleanup Script

• Running the Security HR Demo in the Java Interface

• About Using RASADM to Run the Security HR Demo

Overview of the Security HR Demo
This Human Resources (HR) Demonstration shows how to use basic Real Application
Security (RAS) features. This tutorial is an end-to-end use case scenario. PL/SQL
scripts, a Java program source file, and log files can be found in Real Application
Security HR Demo Files.

The HR demo secures the HR.EMPLOYEE table by applying a data security policy that
has three realms:

1. An employee's own record realm. The ACL, EMP_ACL controls this realm, which
grants application role employee privileges to access the realm, including the
SALARY column.

2. All the records in the IT department realm. The ACL, IT_ACL controls this realm,
which grants application role it_engineer privileges to access the realm, but
excluding the SALARY column.

3. All the employee records realm. The ACL, HR_ACL controls this realm, which
grants application role hr_representative privileges to access the realm,
including the SALARY column.

The HR Demo defines two application users to demonstrate the effects of the policy:

• DAUSTIN, an application user in the IT department. He has application roles
employee and it_engineer. So, he can access realm #1 and realm #2 mentioned
previously; that is, he can view employee records in the IT department, but he
cannot view the SALARY column, except for his own salary record.

• SMAVRIS, an application user in HR department. She has application roles
employee and hr_representative. So, she can access realm #1 and realm #3
mentioned previously; that is, she can view and update all the employee records.

The HR Demo scripts show:

12-1

• How to create Real Application Security objects: application user, application role,
ACL, security class, and data security policy.

• How to use the data security policy to secure rows (using realm constraints) and
columns (using a column constraint) of a table.

• How to directly logon to a database with application users (requiring a password),
and how to create, attach, detach, and destroy a Real Application Security
session.

• How to enable and disable an application role in a Real Application Security
session.

What Each Script Does
The Security HR demo use case runs the following set of PL/SQL scripts to set up
components and run the demo:

• hrdemo_setup.sql: sets up the demo components by:

– Creating a database user as the Real Application Security Administrator and
then connecting as the Real Application Security Administrator to create the
components.

– Creating a database role, DB_EMP.

– Creating an IT application user, DAUSTIN.

– Creating an HR application user, SMAVRIS.

– Creating application roles: employee, it_engineer, and hr_representative,
and then granting the database role DB_EMP to each of these application roles.

– Granting application roles employee and it_engineer to application user
DAUSTIN.

– Granting application roles employee and hr_representative to application
user SMAVRIS.

– Creating the VIEW_SALARY privilege and creating the hr_privileges security
class in which to scope the privilege.

– Creating three ACLs: EMP_ACL, IT_ACL, and HR_ACL, in which:

* EMP_ACL grants the employee role the SELECT database privilege and
VIEW_SALARY application privilege to view an employee's own record,
including the SALARY column.

* IT_ACL grants the it_engineer role only the SELECT database privilege to
view the employee records in the IT department, but it does not grant the
VIEW_SALARY privilege that is required for access to the SALARY column.

* HR_ACL grants the hr_representative role SELECT, INSERT, UPDATE, and
DELETE database privileges to view and update all employee's records,
and granting the VIEW_SALARY application privilege to view the SALARY
column.

– The HR demo secures the HR.EMPLOYEE table by creating and applying the
data security policy, EMPLOYEES_DS, that has the following three realms and
column constraint:

Chapter 12
What Each Script Does

12-2

* An employee's own record realm. The ACL, EMP_ACL controls this realm,
which grants application role employee privileges to access the realm,
including the SALARY column.

* All the records in the IT department realm. The ACL, IT_ACL controls this
realm, which grants application role it_engineer privileges to access the
realm, but excluding the SALARY column.

* All the employee records realm. The ACL, HR_ACL controls this realm,
which grants application role hr_representative privileges to access the
realm, including the SALARY column.

* A column constraint that protects the SALARY column by requiring the
VIEW_SALARY privilege to view its sensitive data.

– Validating all the objects that have been created to ensure that all
configurations are correct.

– Setting up the mid-tier related configuration by creating a DISPATCHER user,
setting the password for this user, and granting the roles, XSCONNECT and
xsdispatcher to this DISPATCHER user.

• hrdemo.sql: runs the demo with direct logon, demonstrating:

– That the IT application user, DAUSTIN, can view the records in the IT
department, but can only view his own salary record, and cannot update his
own record.

– That the HR application user, SMAVRIS, can view all the records, including all
salary rows in the SALARY column, and can update any record.

• hrdemo_session.sql: runs the demo creating and attaching to a Real Application
Security session, demonstrating:

– Connecting as the Real Application Security Administrator and creating an
application session for application user SMAVRIS and attaching to it.

– Displaying the current user as SMAVRIS.

– Displaying the enabled database roles as DB_EMP and application roles as
employee, hr_representative, and XSPUBLIC for the current user SMAVRIS.

– That SMAVRIS application user can view all records including all salary rows in
the SALARY column.

– Disabling the hr_representative and thus limiting application user SMAVRIS
to viewing only her own employee record.

– Enabling the hr_representative, thus allowing SMAVRIS application user to
view all records, including all salary rows in the SALARY column again.

– Detaching from the application session.

– Destroying the application session.

• hrdemo_clean.sql: performs a cleanup operation that removes: application roles,
application users, ACLs, the data security policy, the database role, the Real
Application Security administrative user, and the mid-tier dispatcher user.

• hrdemo.java: runs the HR Demo using the Java interface.

"Setting Up the Security HR Demo Components" describes in more detail how each of
the Real Application Security components is created along with performing some other
important tasks.

Chapter 12
What Each Script Does

12-3

Setting Up the Security HR Demo Components
Before you can create Real Application Security components, you must first connect
as SYS/ user as SYSDBA.

define passwd=&1
connect sys/&passwd as sysdba

This sections includes the following topics:

• About Creating Roles and Application Users

• About Creating the Security Class and ACLs

• About Creating the Data Security Policy

• About Validating the Real Application Security Objects

• About Setting Up the Mid-Tier Related Configuration

About Creating Roles and Application Users
Create the application roles EMPLOYEE, IT_ENGINEER, and HR_REPRESENTATIVE, and the
database role DB_EMP. The DB_EMP role is used to grant the required object privileges to
the two application users that are created, DAUSTIN and SMAVRIS. Finally, grant the HR
user the policy administration privilege, ADMIN_ANY_SEC_POLICY.

Connect as SYS/ user as SYSDBA.

define passwd=&1
connect sys/&passwd as sysdba

Create the application role EMPLOYEE for common employees.

exec sys.xs_principal.create_role(name => 'employee', enabled => true);

Create an application role IT_ENGINEER for the IT department.

exec sys.xs_principal.create_role(name => 'it_engineer', enabled => true);

Create an application role HR_REPRESENTATIVE for the HR department.

exec sys.xs_principal.create_role(name => 'hr_representative', enabled => true);

Create the database role, DB_EMP, for object privilege grants.

create role db_emp;

Grant the DB_EMP database role to the three application roles, so they each have the
required object privilege to access the table.

grant db_emp to employee;
grant db_emp to it_engineer;
grant db_emp to hr_representative;

Create the application users.

Create application user DAUSTIN (in the IT department) and grant this user application
roles EMPLOYEE and IT_ENGINEER.

Chapter 12
Setting Up the Security HR Demo Components

12-4

exec sys.xs_principal.create_user(name => 'daustin', schema => 'hr');
exec sys.xs_principal.set_password('daustin', 'welcome1');
exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');
exec sys.xs_principal.grant_roles('daustin', 'employee');
exec sys.xs_principal.grant_roles('daustin', 'it_engineer');

Create application user SMAVRIS (in the HR department) and grant this user application
roles EMPLOYEE and HR_REPRESENTATIVE.

exec sys.xs_principal.create_user(name => 'smavris', schema => 'hr');
exec sys.xs_principal.set_password('smavris', 'welcome1');
exec sys.xs_principal.grant_roles('smavris', 'XSCONNECT');
exec sys.xs_principal.grant_roles('smavris', 'employee');
exec sys.xs_principal.grant_roles('smavris', 'hr_representative');

Grant the HR user the policy administration privilege, ADMIN_ANY_SEC_POLICY.

exec sys.xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

About Creating the Security Class and ACLs
First, grant the necessary table privileges to the DB_EMP role.

Next, create a security class HR_PRIVILEGES based on the predefined DML security
class. HR_PRIVILEGES has a new privilege VIEW_SALARY, which controls access to the
SALARY column. Finally, create the three ACLs, EMP_ACL, IT_ACL, and HR_ACL.

Connect as the HR user.

connect hr/hr;

Grant the necessary object privileges to the DB_EMP role. This role is used to grant the
required object privileges to application users.

grant select, insert, update, delete on hr.employees to db_emp;

declare
begin
 sys.xs_security_class.create_security_class(
 name => 'hr_privileges',
 parent_list => xs$name_list('sys.dml'),
 priv_list => xs$privilege_list(xs$privilege('view_salary')));
end;
/

Create three ACLs, EMP_ACL, IT_ACL, and HR_ACL to grant privileges for the data
security policy to be defined later.

declare
 aces xs$ace_list := xs$ace_list();
begin
 aces.extend(1);

 -- EMP_ACL: This ACL grants EMPLOYEE role the privileges to view an employee's
 -- own record including SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select','view_salary'),
 principal_name => 'employee');

 sys.xs_acl.create_acl(name => 'emp_acl',
 ace_list => aces,

Chapter 12
Setting Up the Security HR Demo Components

12-5

 sec_class => 'hr_privileges');

 -- IT_ACL: This ACL grants IT_ENGINEER role the privilege to view the employee
 -- records in IT department, but it does not grant the VIEW_SALARY
 -- privilege that is required for access to SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 principal_name => 'it_engineer');

 sys.xs_acl.create_acl(name => 'it_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');

 -- HR_ACL: This ACL grants HR_REPRESENTITIVE role the privileges to view and
update all
 -- employees' records including SALARY column.
 aces(1):= xs$ace_type(privilege_list => xs$name_list('select', 'insert',
 'update', 'delete', 'view_salary'),
 principal_name => 'hr_representative');

 sys.xs_acl.create_acl(name => 'hr_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');
end;
/

About Creating the Data Security Policy
Create the data security policy for the EMPLOYEE table. The policy defines three realm
constraints and a column constraint that protects the SALARY column.

declare
 realms xs$realm_constraint_list := xs$realm_constraint_list();
 cols xs$column_constraint_list := xs$column_constraint_list();
begin
 realms.extend(3);

 -- Realm #1: Only the employee's own record.
 -- The EMPLOYEE role can view the realm including SALARY column.
 realms(1) := xs$realm_constraint_type(
 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 acl_list => xs$name_list('emp_acl'));

 -- Realm #2: The records in the IT department.
 -- The IT_ENGINEER role can view the realm excluding SALARY column.
 realms(2) := xs$realm_constraint_type(
 realm => 'department_id = 60',
 acl_list => xs$name_list('it_acl'));

 -- Realm #3: All the records.
 -- The HR_REPRESENTATIVE role can view and update the realm including
SALARY column.
 realms(3) := xs$realm_constraint_type(
 realm => '1 = 1',
 acl_list => xs$name_list('hr_acl'));

 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 -- privilege.
 cols.extend(1);
 cols(1) := xs$column_constraint_type(
 column_list => xs$list('salary'),

Chapter 12
Setting Up the Security HR Demo Components

12-6

 privilege => 'view_salary');

 sys.xs_data_security.create_policy(
 name => 'employees_ds',
 realm_constraint_list => realms,
 column_constraint_list => cols);
end;
/

Apply the data security policy to the EMPLOYEES table.

begin
 sys.xs_data_security.apply_object_policy(
 policy => 'employees_ds',
 schema => 'hr',
 object =>'employees');
end;
/

About Validating the Real Application Security Objects
After you create these Real Application Security objects, validate them to ensure they
are all properly configured.

begin
 if (sys.xs_diag.validate_workspace()) then
 dbms_output.put_line('All configurations are correct.');
 else
 dbms_output.put_line('Some configurations are incorrect.');
 end if;
end;
/
-- XS$VALIDATION_TABLE contains validation errors if any.
-- Expect no rows selected.
select * from xs$validation_table order by 1, 2, 3, 4;

About Setting Up the Mid-Tier Related Configuration
Set up the mid-tier configuration to be used later. This involves creating a session
administrator, hr_session, who only has Real Application Security administrative
privileges (XS_SESSION_ADMIN and CREATE SESSION), but no data privileges. The
session administrator is responsible for managing the Real Application Security
session for each application user. In addition, it involves creating a DISPATCHER user
and password and granting this user the XSCONNECT and XSDISPATCHER Real
Application Security administrator privileges.

grant xs_session_admin, create session to hr_session identified by hr_session;
grant create session to hr_common identified by hr_common;

Create a dispatcher user for the Java demo to set up a session for the application
user.

exec sys.xs_principal.create_user(name=>'dispatcher', schema=>'HR');
exec sys.xs_principal.set_password('dispatcher', 'welcome1');
exec sys.xs_principal.grant_roles('dispatcher', 'XSCONNECT');
exec sys.xs_principal.grant_roles('dispatcher', 'xsdispatcher');

Chapter 12
Setting Up the Security HR Demo Components

12-7

Running the Security HR Demo Using Direct Logon
To run the HR Demo, first connect as application user DAUSTIN, who has only the
EMPLOYEE and IT_ENGINEER application roles.

conn daustin/welcome1;

Customize how secured column values are to be displayed in SQL*Plus using the
default indicator asterisks (*******) in place of column values.

SET SECUREDCOL ON UNAUTH *******

Perform a query to show that application user DAUSTIN can view the records in the IT
department, but can only view his own SALARY column.

select email, first_name, last_name, department_id, manager_id, salary
from employees order by email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees order by email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
AHUNOLD Alexander Hunold 60 102 *******
BERNST Bruce Ernst 60 103 *******
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 *******
VPATABAL Valli Pataballa 60 103 *******

5 rows selected.

Set to the default display for how secured column values are to be displayed in
SQL*Plus by displaying null values in place of column values for application users
without authorization, and in place of column values where the security level is
unknown.

SET SECUREDCOL OFF

Perform an update operation to show that application user is not authorized to update
the record.

update employees set manager_id = 102 where email = 'DAUSTIN';

SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

0 rows updated.

Perform a query to show that the record is unchanged.

select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
DAUSTIN David Austin 60 103 4800

Chapter 12
Running the Security HR Demo Using Direct Logon

12-8

1 row selected.

Connect as application user SMAVRIS, who has both EMPLOYEE and HR_REPRESENTATIVE
application roles.

conn smavris/welcome1;

Perform a query to show that application user SMAVRIS can view all the records
including SALARY column.

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

Perform a query to show that application user SMAVRIS can access all the records.

select count(*) from employees;

SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

Perform an update of the record to show that application user SMAVRIS can update the
record.

update employees set manager_id = 102 where email = 'DAUSTIN';

SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

1 row updated.

Perform a query to show that the record is changed.

select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------

Chapter 12
Running the Security HR Demo Using Direct Logon

12-9

DAUSTIN David Austin 60 102 4800

1 row selected.

Update the record to change it back to its original state.

update employees set manager_id = 103 where email = 'DAUSTIN';

SQL> update employees set manager_id = 103 where email = 'DAUSTIN';

1 row updated.

Running the Security HR Demo Attached to a Real
Application Security Session

To run the demo attached to a Real Application Security session, the Real Application
Security administrator must first create the session for an application user and attach
to it. In the process, create a variable to remember the session ID.

connect hr_session/hr_session;

var gsessionid varchar2(32);

declare
 sessionid raw(16);
begin
 sys.dbms_xs_sessions.create_session('SMAVRIS', sessionid);
 :gsessionid := rawtohex(sessionid);
 sys.dbms_xs_sessions.attach_session(sessionid, null);
end ;
/

Display the current user.

select xs_sys_context('xs$session','username') from dual;

SQL> select xs_sys_context('xs$session','username') from dual;

XS_SYS_CONTEXT('XS$SESSION','USERNAME')
--
SMAVRIS

1 row selected.

Display the enabled database and application roles for the current application user.

select role_name from v$xs_session_roles union
select role from session_roles order by 1;

SQL> select role_name from v$xs_session_roles union
 2 select role from session_roles order by 1;

ROLE_NAME
--
DB_EMP
EMPLOYEE
HR_REPRESENTATIVE
XSPUBLIC

Chapter 12
Running the Security HR Demo Attached to a Real Application Security Session

12-10

4 rows selected.

Perform a query to show that application user SMAVRIS can view all the records
including SALARY column.

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

Perform a query to show that application user SMAVRIS can access all the records.

select count(*) from employees;

SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

Disable the HR_REPRESENTATIVE role. This will limit application user SMAVRIS to only be
able to see her own record.

exec dbms_xs_sessions.disable_role('hr_representative');

Perform a query

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500

1 row selected.

Enable the HR_REPRESENTATIVE role so the application user can view all the records
including SALARY column.

Chapter 12
Running the Security HR Demo Attached to a Real Application Security Session

12-11

exec dbms_xs_sessions.enable_role('hr_representative');

Perform a query to show that application user can view all the records including
SALARY column.

select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

SQL> -- SMAVRIS can view all the records again.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

Perform a query to show that application user SMAVRIS can access all the records.

select count(*) from employees;

SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

Detach and destroy the application session.

declare
 sessionid raw(16);
begin
 sessionid := hextoraw(:gsessionid);
 sys.dbms_xs_sessions.detach_session;
 sys.dbms_xs_sessions.destroy_session(sessionid);
end;
/

Running the Security HR Demo Cleanup Script
After running the HR demo, you can run the clean up script to remove all of the Real
Application Security components.

To start, connect as the Real Application Security Administrator and then begin
removing components.

define passwd=&1
connect hr/hr;

Remove the data security policy from the EMPLOYEES table.

Chapter 12
Running the Security HR Demo Cleanup Script

12-12

begin
 xs_data_security.remove_object_policy(policy=>'employees_ds',
 schema=>'hr', object=>'employees');
end;
/

Delete the security class and the ACLs.

exec sys.xs_security_class.delete_security_class('hrprivs',
xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('emp_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('it_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('hr_acl', xs_admin_util.cascade_option);

Delete the data security policy.

exec sys.xs_data_security.delete_policy('employees_ds',
xs_admin_util.cascade_option);

Connect as SYS/ user as SYSDBA.

connect sys/&passwd as sysdba

Delete the application roles and application users.

exec sys.xs_principal.delete_principal('employee', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('hr_representative',
xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('it_engineer', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('smavris', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('daustin', xs_admin_util.cascade_option);

Delete the database role.

drop role db_emp;

Delete the Real Application Security session administrator.

drop user hr_session;

Delete the common user used to connect to the database.

drop user hr_common;

Delete the DISPATCHER user used by the mid-tier.

exec sys.xs_principal.delete_principal('dispatcher', xs_admin_util.cascade_option);

Running the Security HR Demo in the Java Interface
See the Output section in "Human Resources Administration Use Case:
Implementation in Java" for a description of the two queries that are returned from
running the Security HR Demo in the Java interface.

About Using RASADM to Run the Security HR Demo
Describes how to use RASADM to create Real Application Security data security
policies using a graphical user interface.

Chapter 12
Running the Security HR Demo in the Java Interface

12-13

Oracle Database Real Application Security Administration (RASADM) lets you create
Real Application Security data security policies using a graphical user interface. For
more information on installing and configuring RASADM, see Real Application Security
Administration.

This section describes the following topics:

• About Running the RASADM Application

• Design Phase

• Development Flow

• About Using RASADM to Create the HR Demo

About Running the RASADM Application
Describes how to run the RASADM application.

The following URL is just an example and the real URL is based on your current
Application Express configuration. Make sure the correct URL is provided. Then log in
as the RASADM administrator using the same password given during the installation.

To run the RASADM application, you would enter in your browser a URL like the
following: https://www.example.com:8080/apex/f?p=rasadm.

Oracle recommends that you turn on HTTPS.

You can log in as the RASADM admin user or any user created after installation using
the password given during installation as shown in the following screen shot.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-14

For More Information

See the following resources for more information:

• Real Application Security discussion forum: Database Security — General

• Real Application Security Documentation: see Oracle Database Real Application
Security Administration

Design Phase
In the design phase, you identify all the tasks an application performs that require
application privileges to control data access.

For example, during the design phase, the application policy designer must identify:

1. The set of application-level operations that require access control.

2. The rows and columns of tables and views that can be accessed as part of the
application-level operations.

3. The set of actors or principals (users and roles) that can perform these operations.

4. The runtime application session attributes that identity rows of a table or views.
These attribute names are used within the predicates that selects the rows to be
authorized, and their values are set during the execution of the application.

Development Flow
To develop data security policies using RASADM, you must follow some basic steps.

In the development phase, as the RASADM administrator, you use RASADM to
develop your data security policies following these steps:

1. Create the corresponding application users and roles. If using an external directory
server, create the application users and roles or user groups in the directory
server. Follow this procedure to create these principals natively in the database:

a. Create the application roles and grant application roles to application roles, if
needed. See the topic on creating application roles.

b. Create the application users and grant application roles to the application
users. See the topic on creating application users.

c. Configure the directory server to fetch the users and role, when principals from
external stores are used. See the topic on configuration.

d. For users and roles in the external Directory Server, manage parameter
settings for using RASADM with a Directory Server. See the topic on
managing settings.

2. Create each privilege class that you plan to use to develop the security policies for
your application. Each privilege class consists of one or more appropriate
privileges that you define and can reference in an ACL and also grant them to the
application users and application roles. Each privilege class authorizes by means
of ACLs the required application-level operations of a data security policy. See the
topic on creating application privilege classes.

3. Create one or more session namespaces that can be used across different
application sessions. This consists of defining for a session namespace its set of

Chapter 12
About Using RASADM to Run the Security HR Demo

12-15

properties (application attributes) and its associated access control policy or ACL
that you can choose from a list or create. See the topic on creating namespaces.

4. Create the data security policy by associating each data realm with an ACL, so as
to create both data realm authorization and column authorization as needed. This
process consists of four parts:

a. Policy Information - You choose the object to be protected and the privilege
class to protect it as well as specify the policy name and select the policy
schema. See Step 3 in the topic on creating data security policies.

b. Column Level Authorization - You choose the name of the column to be
protected and select the privilege to be granted to access the column, which is
associated with the privilege class you selected in Step 3a. See Step 4 in the
topic on creating data security policies.

c. Data Realm Authorization - You create a SQL predicate to represent the data
realm to be protected and add each to a data realm grant list. Then you
choose or create the ACL to protect the data realm. Next, create privilege
grants to be added to a privilege grants list consisting of each principal and
whether it is allowed authorization or denied authorization by selecting the
appropriate privilege. See Step 5 in the topic on creating data security policies.

d. Apply Policy - You can apply, remove, enable, or disable the data security
policy you are creating and choose to specify certain apply options, allowing
the owner of the table or view to bypass this data security policy, and whether
to enforce statement types for this policy. See Step 6 in the topic on creating
data security policies.

About Using RASADM to Create the HR Demo
Describes how to use RASADM to create the HR Demo application.

To begin, you should be running the RASADM application and be logged in as the
ADMIN user as described in About Running the RASADM Application and shown in the
following screen shots.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-16

Chapter 12
About Using RASADM to Run the Security HR Demo

12-17

You will be performing the following tasks:

About Creating Application Roles
Describes how to create application roles and specifically the database DB_EMP role.

You must create a database DB_EMP role using SQL*Plus and grant this role SELECT,
INSERT, UPDATE, and DELETE privileges in HR.EMPLOYEES as this code snippet indicates.

-- Create database role DB_EMP and grant necessary table privileges.
-- This role will be used to grant the required object privileges to
-- application users.
CREATE ROLE DB_EMP;
GRANT SELECT, INSERT, UPDATE, DELETE ON HR.EMPLOYEES TO DB_EMP;

See hrdemo_setup.sqlfor more information.

This next task involves creating the following application roles: EMP_ROLE, IT_ROLE, and
HR_ROLE, and then enabling each application role.

This task can be performed in one of two ways:

• Using RASADM to create these application roles.

• Using an external directory server to create the application roles in the directory
server.

In either case, for the HR Demo, the following application roles will be created:

• EMP_ROLE

• IT_ROLE

• HR_ROLE

Finally, using SQL*Plus, you must grant each of these application roles the database
DB_EMP role as indicated in the following code snippet.

-- Grant DB_EMP to the three application roles, so they have the required
-- object privilege to access the table.
GRANT DB_EMP TO EMP_ROLE;
GRANT DB_EMP TO IT_ROLE;
GRANT DB_EMP TO HR_ROLE;

See hrdemo_setup.sqlfor more information.

• See Using RASADM to Create Application Roles

Using RASADM to Create Application Roles
Describes how to create application roles using RASADM.

To get started, click the Roles tab, then click Create Role.

1. On the Application Role page, enter information in the following fields:

a. Role Name: Enter EMP_ROLE.

b. Description: Enter a brief description.

c. Type of Role: Select the default, ROLE.

d. Enabled by Default: Select Yes.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-18

2. In Roles Grant section, in the Roles field, click ^ and select DB_EMP role from
the list to add it as a direct role grant.

3. Click Apply Changes to create the EMP_ROLE application role.

4. Click the role EMP_ROLE to see the edit view of this role as shown in the following
screen shot.

5. Repeat these steps to create the IT_ROLE and HR_ROLE application roles. Again,
there are no application roles to be granted to either of these application roles.

About Creating Application Users
Describes creating application users and granting them roles.

This task involves creating each application user and granting each application user its
respective application role.

This task can be performed in one of two ways:

• Using RASADM to create application users: DAUSTIN and SMAVRIS.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-19

Next, perform the following grants:

– Grant application roles EMP_ROLE and IT_ROLE to DAUSTIN.

– Grant application roles EMP_ROLE and HR_ROLE to SMAVRIS.

• Using an external directory server to create the application users or application
user groups in the directory server.

In either case, for this HR Demo, the following application users will be created:

• DAUSTIN

• SMAVRIS

Next, you will perform the following grants:

• Grant the application role EMP_ROLE to user DAUSTIN and SMAVRIS.

• Grant the application role IT_ROLE to user DAUSTIN.

• Grant the application role HR_ROLE to user SMAVRIS.

• See Using RASADM to Create Application Users.

Using RASADM to Create Application Users
Describes creating application users using RASADM.

To get started, click the Users tab, then click Create User.

1. On the Manage User page in the Application User section, enter information in
the following fields:

a. Name: Enter DAUSTIN.

b. Description: Enter a brief description.

c. Default Schema: Select HR.

d. Roles Default Enabled: Select Yes.

e. Status: Chose Active.

2. In the Roles Grants section, select the application roles to be granted to the
application user daustin. Enter information in the Role: field by clicking ^ and
selecting EMP_ROLE.

3. Click Add to grant this role. Repeat this process to grant the IT_ROLE to DAUSTIN.

4. Click Apply Changes to create the application user DAUSTIN.

5. Click user DAUSTIN to see the edit view of this user as shown in the following
screen shot.

6. Repeat these steps to grant the EMP_ROLE and HR_ROLE to application user
SMAVRIS.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-20

About Creating the Data Security Policy
Describes the process flow for creating the data security policy.

This task involves creating the HRDEMO data security policy. It includes:

• Entering the policy information.

• Creating the HRPRIVS privilege class and its VIEW_SALARY privilege.

• Creating the SALARY column authorization and selecting the HRPRIVS privilege
class to be applied to the column.

• Creating the data realm authorization consisting of the three data realms, one for
employee access, one for IT access, and one for HR access along with each
associated ACL with its respective defined privilege grant for each principal to
control its row access.

• Applying the HRDEMO data security policy by enabling it.

This section includes the following topics:

Chapter 12
About Using RASADM to Run the Security HR Demo

12-21

Entering Policy Information
Describes entering data security policy information using the RASADM application.

To create a data security policy, click the Policies tab, then click Create to display the
Policy Information page.

1. On the Policy Information page, enter the policy information in the following
fields:

a. Policy Schema: Click ^ and select HR.

b. Policy Name: Enter the name Employees_DS.

c. Description: Enter a brief description for this policy.

d. Privilege Class: Click NEW to create the HRPRIVS privilege class.

2. On the Privilege Class page, enter the following information:

a. For Privilege Class. Privilege Class Name: Enter HRPRIVS.

b. For Privilege Class. Description: Enter a brief description.

c. For Application Privileges. Privilege Name: Enter the name VIEW_SALARY.

d. For Application Privileges. Description: Enter a brief description.

e. For Application Privileges. Implied Privileges: Click Select.

f. Click Add to add the VIEW_SALARY privilege to the Application Privileges list.
See the following figure.

g. Click Apply Changes to save the HRPRIVS privilege class.

3. On the same Privilege Class page, enter the following information:

a. Protected Object's Schema: Click ^ and select HR.

b. Protected Object: Click ^ and select EMPLOYEES.

The following screen shot shows the Policy Information page for the
Employees_DS data security policy.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-22

4. Click Next to go to the Column Authorization page.

Creating the Column Authorization
Describes creating the column authorization part of the data security policy.

1. On the Column Authorization page, enter the following information to create a
column authorization:

a. Column: Click ^ and select SALARY.

b. Privilege: Click ^ and select VIEW_SALARY.

2. Click Add to add the column authorization to the Column Constraint list.

The following screen shot shows the Column Authorization page with the
created SALARY column authorization protected by the VIEW_SALARY privilege.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-23

3. Click Next to go to the Data Realm Authorization page.

Creating the Data Realm Authorizations
Describes the creating the data realm authorizations part of the data security policy.

Three data realm authorizations will be created that:

• Allows a user granted the IT_ROLE to view records in the IT department excluding
the SALARY column.

• Allows a user granted the EMP_ROLE to view their own record including the SALARY
column

• Allows a user granted the HR_ROLE to view and update all records including the
SALARY column.

1. On the Data Realm Authorization page, enter information in the following fields
to create the data realm to allow the IT department member access to their
department records, excluding the SALARY column:

a. Description: Enter a brief description.

b. SQL Predicate: Click > to expand the Predicate Builder field. Enter
information in the following fields:

c. Column Name: Click ^ to select the DEPARTMENT column name.

d. Operator: Click ^ to select the = operator.

e. Value: Enter the value 60.

f. AND/OR: Ignore this option.

g. Click Apply to create the SQL predicate.

The following screen shows the completed IT Department data realm
authorization..

Chapter 12
About Using RASADM to Run the Security HR Demo

12-24

2. ACL Name: Click + to create the IT_ACL. Enter information in the following fields:

a. For ACL Control Lists (ACL), ACL Name: Enter IT_ACL.

b. For ACL Control Lists (ACL), Description: Enter a brief description.

c. For ACL Control Lists (ACL), ACL Inheritance: Ignore this field.

d. For Privilege Grants, Principal: Click <- to select a principal.

e. For Privilege Grants, Principal Type: Click User.

f. For Privilege Grants, Principal Store: Click Database.

g. For Privilege Grants, Principal Filter: Enter DAUSTIN and click Search. Then
click Select to select DAUSTIN as the principal.

h. For Privilege Grants, Privilege: Choose the default option, SELECT.

i. For Privilege Grants, Grant: Choose the option Grant.

j. Click Add to add this privilege grant.

The following screen shot shows the completed IT_ACL ACL and its privilege grant
of the SELECT privilege granted to the IT_ROLE role.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-25

3. Data Realm Grant: Click Add to grant this data realm.

4. On the Data Realm Authorization page, Click Add to begin to add the next data
realm authorization. Enter information in the following fields to create the data
realm to allow the employee access to their own record, including the SALARY
column.

a. Description: Enter a brief description.

b. SQL Predicate: Enter UPPER(email) =
XS_SYS_CONTEXT('XS$SESSION','USERNAME').

c. Click Preview to view the results of the query and see if it is what you
expected.

5. ACL Name: Click + to create the EMP_ACL. Enter information in the following fields:

a. For ACL Control Lists (ACL), ACL Name: Enter EMP_ACL

b. For ACL Control Lists (ACL), Description: Enter a brief description.

c. For ACL Control Lists (ACL), ACL Inheritance: Ignore this field.

d. For Privilege Grants, Principal: Click <- to select a principal.

e. For Privilege Grants, Principal Type: Click User.

f. For Privilege Grants, Principal Store: Click Database.

g. For Privilege Grants, Principal Filter: Enter DAUSTIN and click Search. Then
click Select to select DAUSTIN as the principal.

h. For Privilege Grants, Privilege: Choose the default option, SELECT

i. For Privilege Grants, Grant: Choose the option Grant.

j. Click Add to add this privilege grant.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-26

k. Repeat these same two grants for user SMAVRIS, so user SMAVRIS is granted
SELECT and VIEW_SALARY application privileges.

6. Data Realm Grant: Click Add to grant this data realm.

7. On the Data Realm Authorization page, Click Add to begin to add the next data
realm authorization. Enter information in the following fields to create the data
realm to allow the HR personnel to access and update all employee records,
including the SALARY column.

a. Description: Enter a brief description.

b. SQL Predicate: Enter UPPER(email) =
XS_SYS_CONTEXT('XS$SESSION','USERNAME').

c. Click Preview to view the results of the query and see if it is what you
expected.

8. ACL Name: Click + to create the HR_ACL. Enter information in the following fields:

a. For ACL Control Lists (ACL), ACL Name: Enter HR_ACL

b. For ACL Control Lists (ACL), Description: Enter a brief description.

c. For ACL Control Lists (ACL), ACL Inheritance: Ignore this field.

d. For Privilege Grants, Principal: Click <- to select a principal.

e. For Privilege Grants, Principal Type: Click User.

f. For Privilege Grants, Principal Store: Click Database.

g. For Privilege Grants, Principal Filter: Enter SMAVRIS and click Search. Then
click Select to select SMAVRIS as the principal.

h. For Privilege Grants, Privilege: Choose the default option, SELECT

i. For Privilege Grants, Grant: Choose the option Grant.

j. Repeat this Privileges Grants step to grant UPDATE to SMAVRIS.

k. For Privilege Grants, Principal: Click <- to select a principal.

l. For Privilege Grants, Principal Type: Click User.

m. For Privilege Grants, Principal Store: Click Database.

n. For Privilege Grants, Principal Filter: Enter SMAVRIS and click Search. Then
click Select to select SMAVRIS as the principal.

o. For Privilege Grants, Privilege: Choose UPDATE

p. For Privilege Grants, Grant: Choose the option Grant.

q. Repeat this step two more times to grant INSERT and DELETE to SMAVRIS.

r. Click Add to add this privilege grant.

9. Data Realm Grant: Click Add to add this data realm authorization to the list of
data realm authorizations.

The following screen shot shows the three completed data realm authorizations and
the completed column authorization.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-27

Applying the Policy
Describes applying the data security policy.

To apply the Employees_DS data security policy, perform the following steps:

1. On the Apply Policy page, enter information in the Apply Policy field by selecting
Enable to enable this data security policy.

The following screen shot shows the completed Employees_DS data security policy
on the Policies page with the policy already set to be enabled.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-28

2. Click Apply Changes to create the Employees_DS data security policy.

Chapter 12
About Using RASADM to Run the Security HR Demo

12-29

A
Predefined Objects in Real Application
Security

This appendix describes the following predefined objects in Real Application Security:

• Users

• Roles

• Namespaces

• Security Classes

• ACLs

Users
XSGUEST - A system-defined Real Application Security user typically reserved for
anonymous access.

Roles
Real Application Security provides predefined application roles for regular application
roles, dynamic application roles, and database roles.

This section includes the following topics:

• Regular Application Roles

• Dynamic Application Roles

• Database Roles

Regular Application Roles
Real Application Security provides the following predefined regular application roles:

• XSPUBLIC - This application role is similar to the PUBLIC role in the database. It is
granted to all Real Application Security application users.

• XSBYPASS - A role used to bypass the restrictions imposed by a system
constraining ACL.

• XSPROVISIONER - A role used to grant PROVISION and CALLBACK privileges.

• XSSESSIONADMIN - A role used for session administration.

• XSNAMESPACEADMIN - A role used for namespace attribute administration.

• XSCACHEADMIN - A role used for middle tier cache administration.

• XSDISPATCHER - A role used for session administration, namespace administration,
and middle tier cache administration by a dispatcher.

A-1

• XSCONNECT — A role used to control whether a Real Application Security
application user with a password can connect to the database or not.

Dynamic Application Roles
Real Application Security provides the following predefined dynamic application roles:

• DBMS_AUTH

This application role depends on the authentication state of the application user. It
is enabled whenever the application user is authenticated in the Real Application
Security system as a direct-logon application user using any of the database
authentication methods.

• EXTERNAL_DBMS_AUTH

This application role depends on the authentication state of the external
application user. It is enabled whenever the external application user is
authenticated in the Real Application Security system as an external direct-logon
application user using any of the database authentication methods.

• DBMS_PASSWD

This application role depends on the authentication state of the application user. It
is enabled whenever the application user is authenticated in the Real Application
Security system as a direct-logon application user using a password authentication
method.

• MIDTIER_AUTH

This application role depends on the authentication state of the application user. It
is enabled whenever the application user is authenticated in the Real Application
Security system through the middle tier. The middle tier explicitly passes this
application role to the database indicating that the application user has been
authenticated by the middle tier.

• XSAUTHENTICATED

This application role depends on the authentication state of the application user. It
is enabled whenever the application user is authenticated in the Real Application
Security system (either directly or through the middle tier).

• XSSWITCH

This application role depends on the session state of the application user. It is
enabled whenever the Real Application Security session for an application user is
created as a result of a switch_user operation, that is, if the proxy user in the
original Real Application Security session is switched to an application user.

Database Roles
Real Application Security provides the following database roles.

• PROVISIONER - A database role that has the PROVISION and CALLBACK privileges.

• XS_SESSION_ADMIN - A database role that has the ADMINISTER_SESSION privilege.

• XS_NAMESPACE_ADMIN - A database role that has the ADMIN_ANY_NAMESPACE
privilege.

Appendix A
Roles

A-2

• XS_CACHE_ADMIN - A database role that can be used for middle tier cache
administration.

Namespaces
Real Application Security provides the following predefined namespaces:

• XS$GLOBAL_VAR - Contains the following NLS Attributes: NLS_LANGUAGE,
NLS_TERRITORY, NLS_SORT, NLS_DATE_LANGUAGE, NLS_DATE_FORMAT, NLS_CURRENCY,
NLS_NUMERIC_CHARACTERS, NLS_ISO_CURRENCY, NLS_CALENDAR, NLS_TIME_FORMAT,
NLS_TIMESTAMP_FORMAT, NLS_TIME_TZ_FORMAT, NLS_TIMESTAMP_TZ_FORMAT,
NLS_DUAL_CURRENCY, NLS_COMP, NLS_LENGTH_SEMANTICS, and
NLS_NCHAR_CONV_EXCP.

The XS$GLOBAL_VAR namespace can be loaded in to a Real Application Security
session without requiring any privileges.

• XS$SESSION - Contains the following attributes: CREATED_BY, CREATE_TIME, COOKIE,
CURRENT_XS_USER, CURRENT_XS_USER_GUID, INACTIVITY_TIMEOUT,
LAST_ACCESS_TIME, LAST_AUTHENTICATION_TIME, LAST_UPDATED_BY, PROXY_GUID,
SESSION_ID, SESSION_SIZE, SESSION_XS_USER, SESSION_XS_USER_GUID, USERNAME,
and USER_ID.

Security Classes
Real Application Security provides the following predefined security classes and
application privileges:

• DML - DML Privileges security class. If an ACL does not specify its security class,
DML is the default security class for the ACL. See "DML Security Class" for more
information. Contains the following common application privileges for object
manipulation.

– SELECT - Privilege to read an object.

– INSERT - Privilege to insert an object.

– UPDATE - Privilege to update an object.

– DELETE - Privilege to delete an object.

• SYSTEM - System security class. Contains the following application privileges:

– PROVISION - Privilege for updating principal documents from FIDM. The
PROVISION privilege is also extended for creating, deleting, and modifying Real
Application Security principals (users or roles) beginning in Release 12.2. This
Real Application Security system privilege is intended to replace the traditional
use of database create user, alter user privileges, and so forth to create and
alter Real Application Security application users and roles.

– CALLBACK - Privilege to register and update global callbacks.

– ADMIN_ANY_SEC_POLICY - Privilege for any administrative operation.

– ADMIN_SEC_POLICY - Privilege for administering objects in its own schema.

– ADMIN_NAMESPACE - Privilege for administering any namespace.

• SESSION_SC - Session security class. Contains the following application privileges:

Appendix A
Namespaces

A-3

– CREATE_SESSION - Privilege to create a Real Application Security user session.

– TERMINATE_SESSION - Privilege to terminate a Real Application Security user
session.

– ATTACH_SESSION - Privilege to attach to a Real Application Security user
session.

– MODIFY_SESSION - Privilege to modify contents of a Real Application Security
user session.

– ASSIGN_USER - Privilege to assign user to an anonymous Real Application
Security user session.

– ADMINISTER_SESSION - Privilege for Real Application Security user session
administration, aggregate of CREATE_SESSION, TERMINATE_SESSION,
ATTACH_SESSION, MODIFY_SESSION, and SET_DYNAMIC_ROLES.

– SET_DYNAMIC_ROLES - Privilege to protect Real Application Security
enablement and disablement of a dynamic role as part of the attach session
and assign user operations.

• NSTEMPLATE_SC - Namespace template security class. Contains the following
application privileges:

– MODIFY_NAMESPACE - Privilege to modify session namespace.

– MODIFY_ATTRIBUTE - Privilege to modify session namespace attribute.

– ADMIN_NAMESPACE - Privilege for namespace administration, aggregate of
MODIFY_NAMESPACE and MODIFY_ATTRIBUTE.

ACLs
Real Application Security provides the following predefined ACLs:

• SYSTEMACL - ACL for granting SYSTEM security class privileges.

Grants PROVISION and CALLBACK privileges to PROVISIONER database role and
XSPROVISIONER Real Application Security role.

Grants ADMIN_ANY_SEC_POLICY privilege to DBA database role.

Grants ADMIN_SEC_POLICY privilege to RESOURCE and XS_RESOURCE database roles.

Grants ADMIN_ANY_NAMESPACE privilege to DBA and XS_NAMESPACE_ADMIN database
roles and XSNAMESPACEADMIN and MIDTIER_AUTH Real Application Security roles.

• SESSIONACL - ACL for granting SESSION_SC security class privileges.

Grants ADMINISTER_SESSION privilege to XS_SESSION_ADMIN database role and
XSSESSIONADMIN Real Application Security role.

• NS_UNRESTRICTED_ACL - ACL to grant ADMIN_NAMESPACE privilege to PUBLIC
database role and XSPUBLIC Real Application Security role.

Appendix A
ACLs

A-4

B
Configuring OCI and JDBC Applications for
Column Authorization

This appendix contains:

• About Using OCI to Retrieve Column Authorization Indicators

• About Using JDBC to Retrieve Column Authorization Indicators

About Using OCI to Retrieve Column Authorization
Indicators

Oracle Call Interface (OCI) applications can access database tables that have data
security policies enabled and then test columns for authorization indicators.

• If the column is determined to be unauthorized to the user, a null column value is
returned to the user with indicator "unauthorized".

• If the column authorization cannot be determined, the evaluated column (or
column expression) value will be returned to the user along with the indicator
"unknown." If any of the underlying table columns involved in the top column
expression evaluation is unauthorized, the authorization indicator can be
"unknown" and a null value will be used as the underlying column value for
expression valuation.

• If the column is determined as authorized to the user, the evaluated column value
and indicator will be returned to the user without authorization indicator.

The OCI return code is to communicate column authorization information to the user.
To obtain the authorization information for a column, you must provide a return-code
buffer when the column buffer is bound or defined. After the column data is returned to
the user buffer, you can check the return code associated with the column for
authorization information. The column authorization indicator is applicable to define
variables or out-bind variables defined by the application. The return code buffer does
not have to be provided if the application is not retrieving the column authorization
indicator.

This section describes the following topics:

• Example of Obtaining the Return Code

• About Using the Return Code and Indicator with Authorization Indicator

• About the Warning for Unknown Authorization Indicator

• Using OCI Describe for Column Security

Example of Obtaining the Return Code
The following return codes are used to find the column authorizations:

• ORA-24530: column value is unauthorized to the user

B-1

• ORA-24531: column value authorization is unknown

• ORA-24536: column authorization unknown

If the unknown value authorization indicator (ORA-24531) is returned for any column,
the OCI function status will be OCI_SUCCESS_WITHINFO and the error ORA-24536 will
be returned in the error handle as warning. To suppress the warning, the application
can set attribute, OCI_ATTR_NO_COLUMN_AUTH_WARNING to TRUE in the statement handle
before fetching:

 no_warning = TRUE;
 OCIAttrSet(stmthp, OCI_HTYPE_STMT, (void *)&no_warning, 0,
 OCI_ATTR_NO_COLUMN_AUTH_WARNING, errhp);

The default boolean value of OCI_ATTR_NO_COLUMN_AUTH_WARNING is FALSE.

Example B-1 shows OCI code that retrieves the return codes.

Example B-1 Retrieving Return Codes from OCI for a Column Authorization

OCIDefineByPos(stmthp, &dfnhp, errhp, 1, (void *)data_bufp, (sb4)data_bufl,
 data_typ, (void *)&data_ind, (ub2 *)&data_rlen,
 (ub2 *)&data_rcode, (ub4)OCI_DEFAULT);
status = OCIStmtFetch(stmthp, errhp, 1, OCI_FETCH_NEXT, OCI_DEFAULT);
if (data_rcode == 24530)
 printf("column value not authorized, indicator=%d\n", data_ind);
else if (data_rcode == 24531)
 printf("column value authorization unknown, indicator=%d\n", data_ind);
else {
 printf("column value authorized, indicator=%d\n", data_ind);
 /* process column data */
 ...
};

About Using the Return Code and Indicator with Authorization
Indicator

To access tables with column security, you should access the return code at least
when the column is bound or defined. If the return code is not accessed, the
application needs to know if the column value is authorized with other means so that it
can correctly interpret the indicator and the value.

You should also provide the indicator for the bind or define if column security is
enabled. If the indicator is not provided and the column value is not authorized or
unknown, Oracle Database returns error ORA-1405.

If column value authorization is unknown, the authorization indicator (for ORA-24531)
will take precedence over the regular return codes that may otherwise be returned to
the user. For example, column null fetch (ORA-1405) and column truncation
(ORA-1406) may occur at the same time when a non-null column value is returned
along with unknown authorization indicator. In that case, the application gets
ORA-24531 as the return code for this column, instead of getting ORA-1405 or
ORA-1406. Hence the application should not rely on column return code ORA-1405 or
ORA-1406 to find the exact column that is null fetched or truncated.

Table B-1 and Table B-2 summarizes the behavior of the authorization indicator, return
code, indicator, and return status.

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-2

About the Warning for Unknown Authorization Indicator
If the unknown authorization indicator (ORA-24531) is returned for any column, an OCI
warning is returned to the application, that is, the OCI function status will be
OCI_SUCCESS_WITH_INFO, instead of OCI_SUCCESS. At the same time, ORA-24536 will
be set in the error handle returned to the application.You must check this warning,
examine the SQL being executed, and take appropriate action. The error ORA-24536
takes precedence over the error that is returned when the column is authorized or
column security is not enabled.

If a column value is unauthorized or authorized, the OCI function status code will not
be changed.

By default the column authorization warning is turned on for unknown authorizations.
The application should be designed to handle the error. If the application is prepared
for column security and wants to ignore any unknown authorization indicator, the OCI
warning can be turned off by setting the OCI attribute,
OCI_ATTR_NO_COLUMN_AUTH_WARNING to TRUE in the OCI statement handle before the
column value is fetched.

Table B-1 describes the default authorization behavior for OCI return indicators.

Table B-1 Authorization Indicator Behavior (By Default)

Column
Authorization

Column
Value

IND Provided
RC Provided

IND Not Provided
RC Provided

IND Provided
RC Not Provided

IND Not Provided
RC Not Provided

Unauthorized Any OCI_SUCCESS

Error = 0

IND = -1

RC = 24530

OCI_SUCCESS

Error = 1405

IND = N/A

RC = 24530

OCI_SUCCESS

Error = 0

IND = -1

RC = N/A

OCI_SUCCESS

Error = 1405

IND =-N/A

RC = N/A

Unknown Null SUCCESS_WITH_
INFO

Error = 24536 (0)

IND = -1

RC = 24531 (0)

SUCCESS_WITH_I
NFO

Error = 24536
(1405)

IND = N/A

RC = 24531 (1405)

SUCCESS_WITH_
INFO

Error = 24536 (0)

IND = -1

RC = N/A

SUCCESS_WITH
_INFO

Error = 24536
(1405)

IND = N/A

RC = N/A

Unknown Not Null
and Not
Truncated

SUCCESS_WITH_
INFO

Error = 24536 (0)

IND = 0

RC = 24531 (0)

SUCCESS_WITH_I
NFO

Error = 24536 (0)

IND = N/A

RC = 24531 (0)

SUCCESS_WITH_
INFO

Error = 24536 (0)

IND = 0

RC = N/A

SUCCESS_WITH
_INFO

Error = 24536 (0)

IND = N/A

RC = N/A

Unknown Not Null
and
Truncated

SUCCESS_WITH_
INFO

Error = 24536
(24345)

IND = data_len

RC = 24531 (1406)

SUCCESS_WITH_I
NFO

Error = 24536
(24345)

IND = N/A

RC = 24531 (1406)

SUCCESS_WITH_
INFO

Error = 24536
(1406)

IND = data_len

RC = N/A

SUCCESS_WITH
_INFO

Error = 24536
(1406)

IND = N/A

RC = N/A

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-3

See Also:

Oracle Call Interface Programmer's Guide Table 2-4 shows the default fetch
behavior without column security

Table B-2 describes the default behavior when the OCI_ATTR_NO_AUTH_WARNING
parameter is set to TRUE.

Table B-2 Authorization Indicator Behavior (By Default) -
OCI_ATTR_NO_AUTH_WARNING=TRUE

Column
Authorization

Column
Value

IND Provided
RC Provided

IND Not Provided
RC Provided

IND
Provided
RC Not
Provided

IND Not
Provided
RC Not
Provided

Unknown Null Error = 0

IND = -1

RC = 24531 (0)

Error = 1405

IND = N/A

RC = 24531 (1405)

Error = 0

IND = -1

RC = N/A)

Error = 1405

IND = N/A

RC = N/A

Unknown Not Null and
Not Truncated

Error = 0

IND = 0

RC = 24531 (0)

Error = 0

IND = N/A

RC = 24531 (0)

Error = 0

IND = 0

RC = N/A

Error = 0

IND = N/A

RC = N/A

Unknown Not Null and
Truncated

SUCCESS_WITH_I
NFO

Error = 24345

IND = data_len

RC = 24531 (1406)

SUCCESS_WITH_IN
FO

Error = 24345

IND = N/A

RC = 24531 (1406)

Error = 1406

IND =
data_len

RC = N/A)

Error = 1406

IND = N/A

RC = N/A

Using OCI Describe for Column Security
The OCIDescribeAny() function enables an explicit describe of schema objects.
Applications sometimes need to know if a column is protected by a column constraint
before fetching data. You can use this information to guide the application to process
the data and indicators. This is especially useful to applications that handle dynamic
SQL. The attribute OCI_ATTR_XDS_POLICY_STATUS for the OCI parameter handle is of
data type ub4 and has the following possible values:

• OCI_XDS_POLICY_NONE: No XDS policy for the column or the policy is not enabled

• OCI_XDS_POLICY_ENABLED: policy is enabled for the column

• OCI_XDS_POLICY_UNKNOWN: policy unknown

If the column status is OCI_XDS_POLICY_NONE, then the column values will always be
"authorized." If the column status is OCI_XDS_POLICY_ENABLED, then the column values
will be either "authorized" or "unauthorized." If the column status is
OCI_XDS_POLICY_UNKNOWN, the column value authorization will always be "unknown."

Example B-2 shows how to use the OCIDescribeAny() function to perform an explicit
describe on a set of schema objects.

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-4

See Also:

Oracle Call Interface Programmer's Guide

Example B-2 Using the OCIDescribeAny Function to Enable an Explicit
Describe

void desc_explicit()
{
 const char *table = "col_sec_tab";
 ub4 pos;
 ub2 numcol;
 OCIParam *paramh;
 OCIParam *collst;
 OCIParam *col;
 ub4 colnamelen, colseclen;
 ub1 colname[20];
 ub1 *colnm;
 ub4 colsec;
 ub4 tablen = strlen((char *)table);

 checkerr(errhp, OCIDescribeAny(svchp, errhp, (dvoid *)table, tablen,
 OCI_OTYPE_NAME, 0, OCI_PTYPE_TABLE, deschp));

 checkerr(errhp, OCIAttrGet(deschp, OCI_HTYPE_DESCRIBE, ¶mh, 0,
 OCI_ATTR_PARAM, errhp));

 checkerr(errhp, OCIAttrGet(paramh, OCI_DTYPE_PARAM, &numcol, 0,
 OCI_ATTR_NUM_COLS, errhp));

 checkerr(errhp, OCIAttrGet(paramh, OCI_DTYPE_PARAM, &collst, 0,
 OCI_ATTR_LIST_COLUMNS, errhp));

 printf("Number of columns = %d\n\n", numcol);

 printf(" Column No Column Name Column Security\n");
 printf(" --------- ----------- ---------------\n\n");

 for (pos = 1; (ub4) pos <= numcol; pos++)
 {
 checkerr(errhp, OCIParamGet (collst, OCI_DTYPE_PARAM, errhp,
 (dvoid **)&col, pos));

 checkerr(errhp, OCIAttrGet ((dvoid *)col, (ub4) OCI_DTYPE_PARAM,
 (dvoid **)&colnm, (ub4 *) &colnamelen,
 (ub4) OCI_ATTR_NAME, errhp));

 memset (colname, ' ', 20);
 strncpy((char *)colname, (char *)colnm, colnamelen);
 colname[10] = '\0';

 checkerr(errhp, OCIAttrGet ((dvoid *)col, (ub4) OCI_DTYPE_PARAM,
 (dvoid **)&colsec, (ub4 *) &colseclen,
 (ub4) OCI_ATTR_XDS_POLICY_STATUS, errhp));

 printf(" %d %s %s\n", pos, colname,

Appendix B
About Using OCI to Retrieve Column Authorization Indicators

B-5

 ((colsec == OCI_XDS_POLICY_ENABLED) ? "ENABLED" :
 ((colsec == OCI_XDS_POLICY_NONE) ? "NONE" :
 ((colsec == OCI_XDS_POLICY_UNKNOWN) ? "UNKNOWN" :
 "ERROR"))));
 }

 return;
}

About Using JDBC to Retrieve Column Authorization
Indicators

JDBC applications can access database tables that have data security policies
enabled, and test columns for authorization indicators. You can use the JDBC APIs
described in this section to check the security attributes and user authorization for a
table column.

This section contains:

• About Checking Security Attributes for a Table Column

• About Checking User Authorization for a Table Column

• Example of Checking Security Attributes and User Authorization

About Checking Security Attributes for a Table Column
The getSecurityAttribute method of the oracle.jdbc.OracleResultSetMetaData
interface enables you to check the data security policy attribute for a column. The
security attribute has the following definition:

public static enum SecurityAttribute
 {
 NONE,
 ENABLED,
 UNKNOWN;
 }

SecurityAttribute can have the following values:

• NONE implies that no column data security policy is enabled for the column. This
means that the column either does not have a policy applied to it, or the policy is
not enabled.

• ENABLED implies that column data security policy is enabled for the column.

• UNKNOWN implies that the column data security policy for the column is unknown.
This could happen, for example, if the column is a union of two columns but only
one of the columns has data security attributes.

The getSecurityAttribute method has the following signature:

public SecurityAttribute getSecurityAttribute(int indexOfColumnInResultSet) throws
SQLException;

The getSecurityAttribute method returns the SecurityAttribute value for the
column.

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-6

See Also:

Example B-3 for an example of using the getSecurityAttribute method

About Checking User Authorization for a Table Column
The getAuthorizationIndicator method of the oracle.jdbc.OracleResultSet
interface enables you to check the AuthorizationIndicator attribute for a column.
The AuthorizationIndicator attribute has the following definition:

public static enum AuthorizationIndicator
 {
 NONE,
 UNAUTHORIZED,
 UNKNOWN;
 }

AuthorizationIndicator can have the following values:

• NONE implies that access to column data is authorized. The user might have explicit
authorization or the column could be lacking security attributes.

• UNAUTHORIZED implies that access to column data is not authorized.

When the column value is retrieved, the authorization indicator is evaluated based
on the enabled column constraint policy for the column. If the user is not
authorized to access the column value, a NULL value is returned to the application
along with the authentication indicator, AuthorizationIndicator.UNAUTHORIZED.

If there is a column expression involving the unauthorized base column, the
evaluated value is returned to the application along with the
AuthorizationIndicator.UNAUTHORIZED indicator. The application should
examine the authorization indicator before interpreting the returned data.

• UNKNOWN implies that the authorization indicator cannot be determined.

Sometimes, the server fails to determine the authorization indicator for a SELECT
item due to functionality limitations or performance constrains. This can happen if
the query involves a column expression, for example, and the server is unable to
compute whether the top operator is supposed to be authorized. In such a
scenario, the server returns the authorization indicator,
AuthorizationIndicator.UNKNOWN to the application. The returned value can be
NULL or not NULL depending on how the column expression operates on the
underlying column value.

If the application sees an UNKNOWN authorization indictor, it should determine
whether or not the returned value should be accessed. If the query and its column
expressions are designed to handle unauthorized NULL values from the underlying
columns, then the application can use the returned value. Otherwise the
application may have to take appropriate actions for the returned value.

The getAuthorizationIndicator method has the following forms:

/**
 * Accepts the column index number as an argument and retrieves the corresponding
column security AuthorizationIndicator value
 */

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-7

public AuthorizationIndicator getAuthorizationIndicator(int columnIndex) throws
SQLException;

/**
 * Accepts the column name as a string and retrieves the column security
AuthorizationIndicator value
 */
public AuthorizationIndicator getAuthorizationIndicator(String columnName)throws
SQLException;

Note:

• The preceding methods throw a SQLException if the index specified in
the argument is invalid.

• If a column is masked, the JDBC user sees it as a NULL value. An
exception is not thrown for this.

See Also:

Example B-3 for an example of using the getAuthorizationIndicator
method

Example of Checking Security Attributes and User Authorization
Example B-3 illustrates the use of the getSecurityAttribute and getAuthorization
methods to check security attributes and user authorization. The program uses the
sample EMP table to illustrate the procedure.

The EMP table is configured as follows:

Column
No.

Column Title Security Attribute

1 EMPNO No security attribute

2 ENAME Active security

3 JOB No security attribute

4 MGR Active security

5 HIREDATE Unknown security attribute

6 SAL Active security

7 COMM No security attribute

6 DEPTNO Active security

The program performs the following actions:

1. Selects rows from the EMP table

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-8

2. Uses the getSecurityAttribute method to extract the security setting for each
column in the result set. It prints these as column headings

3. Uses the getAuthorizationIndicator method to check the user authorization for
returned column values. The program prints these values and formats them as
follows:

An unauthorized value that is returned as NULL is represented by four asterisk
characters (****).

Example B-3 Check Security Attributes and User Authorization

PreparedStatement pstmt = conn.prepareStatement("SELECT * FROM EMP");
 ResultSet rs = pstmt.executeQuery();
 OracleResultSetMetaData metaData =
 (OracleResultSetMetaData)rs.getMetaData();
 int nbOfColumns = metaData.getColumnCount();
 OracleResultSetMetaData.SecurityAttribute[] columnSecurity
 = new OracleResultSetMetaData.SecurityAttribute[nbOfColumns];
 // display which columns are protected:
 for(int i=0;i<nbOfColumns;i++)
 {
 columnSecurity[i] = metaData.getSecurityAttribute(i+1);
 System.out.print(columnSecurity[i]);
 System.out.print("\t");
 }
 System.out.println();
 System.out.println("---");
 while(rs.next())
 {
 for(int colIndex=0;colIndex<nbOfColumns;colIndex++)
 {
 OracleResultSet.AuthorizationIndicator visibility
 = ((OracleResultSet)rs).getAuthorizationIndicator(colIndex+1);
 if(visibility == OracleResultSet.AuthorizationIndicator.UNAUTHORIZED)
 System.out.print("****");
 else
 System.out.print(rs.getString(colIndex+1));
 System.out.print("\t");
 }
 System.out.println("");
 }
 rs.close();
 pstmt.close();

The program generates the following output:

NONE ENABLED NONE ENABLED UNKNOWN ENABLED NONE ENABLED
--
7369 SMITH CLERK 7902 1980-12-17 **** null 20
7499 ALLEN SALESMAN 7698 1981-02-20 **** 300 30
7521 WARD SALESMAN 7698 1981-02-22 **** 500 30
7566 JONES MANAGER 7839 1981-04-02 **** null 20
7654 MARTIN SALESMAN 7698 1981-09-28 **** 1400 30
7698 BLAKE MANAGER 7839 1981-05-01 **** null 30
7782 CLARK MANAGER 7839 1981-06-09 **** null 10
7788 SCOTT ANALYST 7566 1987-04-19 **** null 20
7839 KING PRESIDENT null 1981-11-17 **** null 10
7844 TURNER SALESMAN 7698 1981-09-08 **** 0 30
7876 ADAMS CLERK 7788 1987-05-23 **** null 20
7900 JAMES CLERK 7698 1981-12-03 **** null 30

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-9

7902 FORD ANALYST 7566 1981-12-03 **** null 20
7934 MILLER CLERK 7782 1982-01-23 **** null 10

Appendix B
About Using JDBC to Retrieve Column Authorization Indicators

B-10

C
Real Application Security HR Demo Files

This appendix contains both the source files and log files. A detailed description of the
HR Demo can be found in Real Application Security HR Demo .

This appendix describes the following topics:

• How to Run the Security HR Demo

• Scripts for the Security HR Demo

• Generated Log Files for Each Script

How to Run the Security HR Demo
To run the Security HR demo, run the following scripts in the order shown:

1. Run the setup script hrdemo_setup.sql, which creates the log file:
hrdemo_setup.log.

2. Run the demo script hrdemo.sql with direct logon, which creates the log file:
hrdemo.log.

3. Run the demo script to explicitly create and attach to the Real Application Security
session hrdemo_session.sql, which creates the log file: hrdemo_session.log.

4. Run the Java demo hrdemo.java file, which creates the log file: hrdemo.log.

5. Run the clean up script hrdemo_clean.sql, which creates the log file:
hrdemo_clean.log.

Scripts for the Security HR Demo
Table C-1 lists the scripts and generated log files with links to the content of each file.

Table C-1 HR Demo Scripts and Log Files

Scripts Log Files

hrdemo_setup.sql hrdemo_setup.log

hrdemo.sql hrdemo.log

hrdemo_session.sql hrdemo_session.log

hrdemo.java hrdemo.log

hrdemo_clean.sql hrdemo_clean.log

This section includes the following script files:

hrdemo_setup.sql
The source file for the set up script hrdemo_setup.sql.

C-1

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET ECHO ON

define passwd=&1

--
-- Introduction
--
-- The HR Demo shows how to use basic Real Application Security features.
-- The demo secures HR.EMPLOYEES table by creating a data security
-- policy that grants the table access to:
-- Data Security Policy
--
--(1) An employee can view his/her own record including SALARY column.
--(2) An IT engineer can view all employee records in IT department,
-- but cannot view employee's salaries.
--(3) An HR representative can view and update all employee records.
--
--
--Sample Users and Their Role Grants:
-- 1) DAUSTIN, an application user in IT department. He has role employee
-- and it_engineer. He can view employee records in IT department, but he
-- cannot view the salary column except for his own.
-- 2) SMAVRIS, an application user in HR department. She has role employee
-- and hr_representative. She can view and update all the employee records.

--
-- 1. SETUP - User and Roles
--

connect sys/&passwd as sysdba
-- Create an application role employee for common employees.
exec sys.xs_principal.create_role(name => 'employee', enabled => true);

-- Create an application role it_engineer for IT department.
exec sys.xs_principal.create_role(name => 'it_engineer', enabled => true);

-- Create an application role hr_representative for HR department.
exec sys.xs_principal.create_role(name => 'hr_representative', enabled => true);

-- create a database role for object privilege grants
create role db_emp;

-- Grant DB_EMP to the three application roles, so they have the required
-- object privileges to access the table.
grant db_emp to employee;
grant db_emp to it_engineer;
grant db_emp to hr_representative;

-- Create two application users:
-- DAUSTIN (in IT department), granted employee and it_engineer.
exec sys.xs_principal.create_user(name => 'daustin', schema => 'hr');
exec sys.xs_principal.set_password('daustin', 'welcome1');
exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');
exec sys.xs_principal.grant_roles('daustin', 'employee');

Appendix C
Scripts for the Security HR Demo

C-2

exec sys.xs_principal.grant_roles('daustin', 'it_engineer');

-- SMAVRIS (in HR department), granted employee and hr_representative.
exec sys.xs_principal.create_user(name => 'smavris', schema => 'hr');
exec sys.xs_principal.set_password('smavris', 'welcome1');
exec sys.xs_principal.grant_roles('daustin', 'XSCONNECT');
exec sys.xs_principal.grant_roles('smavris', 'employee');
exec sys.xs_principal.grant_roles('smavris', 'hr_representative');

-- Grant HR user policy adminisration privilege
exec sys.xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

--
-- 2. SETUP - Security class and ACL
--

-- Connect as HR
connect hr/hr;

-- Grant necessary object privileges to db_emp role
-- This role will be used to grant the required object privileges to
-- application users.

grant select, insert, update, delete on hr.employees to db_emp;

-- Create a security class hr_privileges and include privileges from the predefined
DML security class.
-- hr_privileges has a new privilege VIEW_SALARY, which is used to control the
-- access to SALARY column.
declare
begin
 sys.xs_security_class.create_security_class(
 name => 'hr_privileges',
 parent_list => xs$name_list('sys.dml'),
 priv_list => xs$privilege_list(xs$privilege('view_salary')));
end;
/

-- Create three ACLs to grant privileges for the policy defined later.
declare
 aces xs$ace_list := xs$ace_list();
begin
 aces.extend(1);

 -- EMP_ACL: This ACL grants employee the privileges to view an employee's
 -- own record including SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select','view_salary'),
 principal_name => 'employee');

 sys.xs_acl.create_acl(name => 'emp_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');

 -- IT_ACL: This ACL grants it_engineer the privilege to view the employee
 -- records in IT department, but it does not grant the VIEW_SALARY
 -- privilege that is required for access to SALARY column.
 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 principal_name => 'it_engineer');

 sys.xs_acl.create_acl(name => 'it_acl',
 ace_list => aces,

Appendix C
Scripts for the Security HR Demo

C-3

 sec_class => 'hr_privileges');

 -- HR_ACL: This ACL grants hr_representative the privileges to view and update all
 -- employees' records including SALARY column.
 aces(1):= xs$ace_type(privilege_list => xs$name_list('select', 'insert',
 'update', 'delete', 'view_salary'),
 principal_name => 'hr_representative');

 sys.xs_acl.create_acl(name => 'hr_acl',
 ace_list => aces,
 sec_class => 'hr_privileges');
end;
/

--
-- 3. SETUP - Data security policy
--
-- Create data security policy for EMPLOYEE table. The policy defines three
-- realm constraints and a column constraint that protects SALARY column.
declare
 realms xs$realm_constraint_list := xs$realm_constraint_list();
 cols xs$column_constraint_list := xs$column_constraint_list();
begin
 realms.extend(3);

 -- Realm #1: Only the employee's own record.
 -- employee can view the realm including SALARY column.
 realms(1) := xs$realm_constraint_type(
 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 acl_list => xs$name_list('emp_acl'));

 -- Realm #2: The records in the IT department.
 -- it_engineer can view the realm excluding SALARY column.
 realms(2) := xs$realm_constraint_type(
 realm => 'department_id = 60',
 acl_list => xs$name_list('it_acl'));

 -- Realm #3: All the records.
 -- hr_representative can view and update the realm including SALARY
column.
 realms(3) := xs$realm_constraint_type(
 realm => '1 = 1',
 acl_list => xs$name_list('hr_acl'));

 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 -- privilege.
 cols.extend(1);
 cols(1) := xs$column_constraint_type(
 column_list => xs$list('salary'),
 privilege => 'view_salary');

 sys.xs_data_security.create_policy(
 name => 'employees_ds',
 realm_constraint_list => realms,
 column_constraint_list => cols);
end;
/

-- Apply the data security policy to the table.
begin
 sys.xs_data_security.apply_object_policy(

Appendix C
Scripts for the Security HR Demo

C-4

 policy => 'employees_ds',
 schema => 'hr',
 object =>'employees');
end;
/

--
-- 4. SETUP - Validate the objects we have set up.
--
set serveroutput on;
begin
 if (sys.xs_diag.validate_workspace()) then
 dbms_output.put_line('All configurations are correct.');
 else
 dbms_output.put_line('Some configurations are incorrect.');
 end if;
end;
/
-- XS$VALIDATION_TABLE contains validation errors if any.
-- Expect no rows selected.
select * from xs$validation_table order by 1, 2, 3, 4;

--
-- 5. SETUP - Mid-Tier related configuration.
--

connect sys/&passwd as sysdba

-- create a session administrator who has only
-- RAS session administration privilege (no data privilege),
-- and is responsible to manage RAS session for each application user.
grant xs_session_admin, create session to hr_session identified by hr_session;
grant create session to hr_common identified by hr_common;

-- craete a dispatcher user for java demo, to set up session for application user
exec sys.xs_principal.create_user(name=>'dispatcher', schema=>'HR');
exec sys.xs_principal.set_password('dispatcher', 'welcome1');
exec sys.xs_principal.grant_roles('dispatcher', 'XSCONNECT');
exec sys.xs_principal.grant_roles('dispatcher', 'xsdispatcher');

exit

hrdemo.sql
The source file for the hrdemo.sql script. This script runs the demo with direct logon.

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
COLUMN EMAIL FORMAT A10
COLUMN FIRST_NAME FORMAT A15
COLUMN LAST_NAME FORMAT A15
COLUMN DEPARTMENT_ID FORMAT 9999
COLUMN MANAGER_ID FORMAT 9999
COLUMN SALARY FORMAT 999999
SET ECHO ON

Appendix C
Scripts for the Security HR Demo

C-5

--
-- HR Demo - PL/SQL with RAS direct logon user
--
-- This demo shows RAS runtime, using RAS direct logon user.
-- Each user directly connects to database and accesses employee table.
-- RAS policy is automatically enforced.

-- Connect as DAUSTIN, who has only employee and it_engineer role
conn daustin/welcome1;

SET SECUREDCOL ON UNAUTH *******

-- DAUSTIN can view the records in IT department, but can only view his own
-- SALARY column.
select email, first_name, last_name, department_id, manager_id, salary
from employees order by email;

SET SECUREDCOL OFF

-- DAUSTIN cannot update the record.
update employees set manager_id = 102 where email = 'DAUSTIN';

-- Record is not changed.
select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

-- Connect as SMAVRIS, who has both employee and hr_representative role.
conn smavris/welcome1;

-- SMAVRIS can view all the records including SALARY column.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

-- EMPLOYEES table has 107 rows, we expect to see all of them.
select count(*) from employees;

-- SMAVRIS can update the record.
update employees set manager_id = 102 where email = 'DAUSTIN';

-- Record is changed.
select email, first_name, last_name, department_id, manager_id, salary
from employees where email = 'DAUSTIN';

-- change the record back to the original.
update employees set manager_id = 103 where email = 'DAUSTIN';

exit

hrdemo_session.sql
The source file for the hrdemo_session.sql script. This script explicitly creates and
attaches a Real Application Security session.

Appendix C
Scripts for the Security HR Demo

C-6

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
COLUMN EMAIL FORMAT A10
COLUMN FIRST_NAME FORMAT A15
COLUMN LAST_NAME FORMAT A15
COLUMN DEPARTMENT_ID FORMAT 9999
COLUMN MANAGER_ID FORMAT 9999
COLUMN SALARY FORMAT 999999
SET ECHO ON

--
-- HR Demo - PL/SQL with Session API
--
-- This demo shows RAS runtime, using RAS user as application user.
-- The user does not logon to database, but a RAS session is created
-- and attached for each user before accessing employee table.

-- Connect as RAS session administrator.
connect hr_session/hr_session;

-- Variable used to remember the session ID.
var gsessionid varchar2(32);

-- Create an application session for SMARVIS and attach to it.
declare
 sessionid raw(16);
begin
 sys.dbms_xs_sessions.create_session('SMAVRIS', sessionid);
 :gsessionid := rawtohex(sessionid);
 sys.dbms_xs_sessions.attach_session(sessionid, null);
end ;
/

-- Display the current user, it should be SMAVRIS now.
select xs_sys_context('xs$session','username') from dual;

-- Display the enabled application roles and database roles.
select role_name from v$xs_session_roles union
select role from session_roles order by 1;

-- SMAVRIS can view all the records including SALARY column.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

-- EMPLOYEES table has 107 rows, we expect to see all of them.
select count(*) from employees;

-- Disable hr_representative role.
exec dbms_xs_sessions.disable_role('hr_representative');

-- SMAVRIS should only be able to see her own record.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

Appendix C
Scripts for the Security HR Demo

C-7

-- Enable hr_representative role.
exec sys.dbms_xs_sessions.enable_role('hr_representative');

-- SMAVRIS can view all the records again.
select email, first_name, last_name, department_id, manager_id, salary
from employees where department_id = 60 or department_id = 40
order by department_id, email;

-- EMPLOYEES table has 107 rows, we expect to see all of them.
select count(*) from employees;

-- Detach and destroy the application session.
declare
 sessionid raw(16);
begin
 sessionid := hextoraw(:gsessionid);
 sys.dbms_xs_sessions.detach_session;
 sys.dbms_xs_sessions.destroy_session(sessionid);
end;
/

exit

hrdemo.java
The source file for the Java demo is hrdemo.java.

import java.security.GeneralSecurityException;
import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.spec.InvalidKeySpecException;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.ArrayList;
import java.util.List;
import oracle.jdbc.OracleDriver;
import oracle.jdbc.OracleResultSet;
import oracle.jdbc.OracleResultSet.AuthorizationIndicator;

import oracle.security.xs.AccessDeniedException;
import oracle.security.xs.InvalidXSNamespaceException;
import oracle.security.xs.InvalidXSUserException;
import oracle.security.xs.Role;
import oracle.security.xs.Session;
import oracle.security.xs.XSAccessController;
import oracle.security.xs.XSException;
import oracle.security.xs.XSSessionManager;

/**
 * A simple java application implemented using RAS.
 * It shows:
 * - How to setup RAS session manager
 * - How to manage RAS sessions

Appendix C
Scripts for the Security HR Demo

C-8

 * - How to use Column authorization indicator
 * - How to check privileges using "checkAcl" function
*/
public class hrdemo {

 // application connection, should be created with unprivileged user
 // in RAS case, the user only needs DB connection privilege
 private Connection appConnection = null;

 // RAS dispatcher's connection, should be create with a RAS dispatcher user
 private Connection mgrConnection = null;
 // RAS session manager, to manage session for application user
 // Must be instanciated with disptcher's connection
 private XSSessionManager manager = null;

 public static void main(String[] args) {

 try {
 DriverManager.registerDriver(new OracleDriver());

 if (args.length != 1) {
 System.out.println("Usage hrdemo dbURL");
 System.exit(1);
 }
 hrdemo demo = new hrdemo();
 demo.setupConnection(args[0]);

 demo.queryAsUser("DAUSTIN");
 demo.queryAsUser("SMAVRIS");

 demo.cleanupConnection();

 } catch (Exception e) {
 // we don't handle exception for now
 e.printStackTrace();
 }
 }

 private void queryAsUser(String user) throws SQLException, XSException {

 System.out.println("\nQuery HR.EMPLOYEES table as user \"" + user + "\"");

 Session lws = manager.createSession(appConnection, user, null,null);
 manager.attachSession(appConnection, lws, null, null, null, null, null);

 queryEmployees(lws);

 manager.detachSession(lws);
 manager.destroySession(appConnection, lws);

 }

 public void setupConnection(String url) throws SQLException, XSException,
GeneralSecurityException {
 // dispatcher's connection
 mgrConnection =
 DriverManager.getConnection(url, "dispatcher", "welcome1");

 // RAS session manager
 manager = XSSessionManager.getSessionManager(mgrConnection, 30, 2048000);

Appendix C
Scripts for the Security HR Demo

C-9

 // connection used for application query
 appConnection = DriverManager.getConnection(url, "hr_common", "hr_common");
 }

 public void cleanupConnection() throws SQLException {
 mgrConnection.close();
 appConnection.close();

 }

 public void queryEmployees(Session lws) throws SQLException, XSException {
 // using DB connection that has been attached to a RAS session
 Connection conn = lws.getConnection();
 String query = " select email, first_name, last_name, department_id, salary,
ora_get_aclids(emp) from hr.employees emp where department_id in (40, 60, 100) order
by email";

 Statement stmt = null;
 ResultSet rs = null;

 System.out.printf(" EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE |
VIEW_SALARY\n");

 try {

 stmt = conn.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {

 String email = rs.getString("EMAIL");
 String first_name = rs.getString("FIRST_NAME");
 String last_name = rs.getString("LAST_NAME");
 String department_id = rs.getString("DEPARTMENT_ID");
 String salary;

 if (((OracleResultSet)rs).getAuthorizationIndicator("SALARY") ==
AuthorizationIndicator.NONE) {
 salary = rs.getString("SALARY");
 }
 else {
 salary = "*****";
 }

 byte[] aclRaw = rs.getBytes(6);
 String update, viewSalary;

 // call checkAcl to determine whether can update the database record
 if (XSAccessController.checkAcl(lws, aclRaw, "UPDATE")) {
 update = "true";
 }
 else {
 update = "false";
 }

 if (XSAccessController.checkAcl(lws, aclRaw, "VIEW_SALARY")) {
 viewSalary = "true";
 }
 else {

Appendix C
Scripts for the Security HR Demo

C-10

 viewSalary = "false";
 }

 System.out.printf("%9s|%12s|%12s|%6s|%8s|%8s|%8s\n", email,
 first_name, last_name, department_id,
 salary, update, viewSalary);
 }
 } finally {
 try { if (rs != null) rs.close(); } catch (Exception e) {};
 try { if (stmt != null) stmt.close(); } catch (Exception e) {};
 }
 }
}

hrdemo_clean.sql
The source file for the cleanup script is hrdemo_clean.sql.

SET ECHO OFF
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 80
SET TRIMSPOOL ON
SET TAB OFF
SET PAGESIZE 100
SET ECHO ON

define passwd=&1

connect hr/hr;

-- Remove policy from the table.
begin
 sys.xs_data_security.remove_object_policy(policy=>'employees_ds',
 schema=>'hr', object=>'employees');
end;
/
-- Delete security class and ACLs
exec sys.xs_security_class.delete_security_class('hr_privileges',
xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('emp_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('it_acl', xs_admin_util.cascade_option);
exec sys.xs_acl.delete_acl('hr_acl', xs_admin_util.cascade_option);

-- Delete data security policy
exec sys.xs_data_security.delete_policy('employees_ds',
xs_admin_util.cascade_option);

connect sys/&passwd as sysdba
-- Delete application users and roles
exec sys.xs_principal.delete_principal('employee', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('hr_representative',
xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('it_engineer', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('smavris', xs_admin_util.cascade_option);
exec sys.xs_principal.delete_principal('daustin', xs_admin_util.cascade_option);

-- Delete database role
drop role db_emp;

Appendix C
Scripts for the Security HR Demo

C-11

-- Delete session administrator
drop user hr_session;
-- Delete the common user used to connect to DB
drop user hr_common;

-- Delete dispatcher user used by mid-tier
exec sys.xs_principal.delete_principal('dispatcher', xs_admin_util.cascade_option);

exit

Generated Log Files for Each Script
This section includes the following log files that are generated from running the scripts
listed in Table C-1:

• hrdemo_setup.log

• hrdemo.log

• hrdemo_run_sess.log

• hrdemo.log

• hrdemo_clean.log

hrdemo_setup.log
The hrdemo_setup.log file.

SQL> @hrdemo_setup
SQL>
SQL> define passwd=&1
Enter value for 1: sample
SQL>
SQL> --
SQL> -- Introduction
SQL> --
SQL> -- The HR Demo shows how to use basic Real Application Security
features.
SQL> -- The demo secures HR.EMPLOYEE table by creating a data security
SQL> -- policy that grants the table access to.
SQL> -- Data Security Policy
SQL> --
SQL> --(1) An employee can view his/her own record including SALARY column.
SQL> --(2) An IT engineer can view all employee records in IT department,
SQL> -- but cannot view employee's salaries.
SQL> --(3) An HR representative can view and update all employee records.
SQL> --
SQL> --
SQL> --Sample Users and Their Role Grants:
SQL> --1) DAUSTIN, an application user in IT department. He has role
employee
SQL> -- and it_engineer. He can view employee records in IT department,
but he
SQL> -- cannot view the salary column except for his own.
SQL> --2) SMAVRIS, an application user in HR department. She has role

Appendix C
Generated Log Files for Each Script

C-12

employee
SQL> -- and hr_representative. She can view and update all the employee
records
SQL> --
SQL> --
SQL> -- 1. SETUP - User and Roles
SQL> --
SQL>
SQL> connect sys/&passwd as sysdba
Connected.
SQL> -- Create an application role employee for common employees.
SQL> exec xs_principal.create_role(name => 'employee', enabled => true);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Create an application role it_engineer for IT department.
SQL> exec xs_principal.create_role(name => 'it_engineer', enabled => true);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Create an application role hr_representative for HR department.
SQL> exec xs_principal.create_role(name => 'hr_representative', enabled =>
true);

PL/SQL procedure successfully completed.

SQL>
SQL> -- create a database role for object privilege grants
SQL> create role db_emp;

Role created.

SQL>
SQL> -- Grant DB_EMP to the three application roles, so they have the
required
SQL> -- object privileges to access the table.
SQL> grant db_emp to employee;

Grant succeeded.

SQL> grant db_emp to it_engineer;

Grant succeeded.

SQL> grant db_emp to hr_representative;

Grant succeeded.

SQL>
SQL> -- Create two application users:
SQL> -- DAUSTIN (in IT department), granted employee and it_engineer.
SQL> exec xs_principal.create_user(name => 'daustin', schema => 'hr');

Appendix C
Generated Log Files for Each Script

C-13

PL/SQL procedure successfully completed.

SQL> exec xs_principal.set_password('daustin', 'welcome1');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('daustin', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('daustin', 'employee');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('daustin', 'it_engineer');

PL/SQL procedure successfully completed.

SQL>
SQL> -- SMAVRIS (in HR department), granted employee and hr_representative.
SQL> exec xs_principal.create_user(name => 'smavris', schema => 'hr');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.set_password('smavris', 'welcome1');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('smavris', 'XSCONNECT');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('smavris', 'employee');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('smavris', 'hr_representative');

PL/SQL procedure successfully completed.

SQL>
SQL> -- Grant HR user policy adminisration privilege
SQL> exec
xs_admin_util.grant_system_privilege('ADMIN_ANY_SEC_POLICY','HR');

PL/SQL procedure successfully completed.

SQL>
SQL> --
SQL> -- 2. SETUP - Security class and ACL
SQL> --
SQL>
SQL>
SQL> -- Connect as HR
SQL> connect hr/hr;

Appendix C
Generated Log Files for Each Script

C-14

Connected.
SQL>
SQL> -- Grant necessary object privileges to db_emp role
SQL> -- This role will be used to grant the required object privileges to
SQL> -- application users.
SQL>
SQL> grant select, insert, update, delete on hr.employees to db_emp;

Grant succeeded.

SQL>
SQL>
SQL> -- Create a security class hr_privileges and include privileges from
the predefined DML security class.
SQL> -- hr_privileges has a new privilege VIEW_SALARY, which is used to
control the
SQL> -- access to SALARY column.
SQL> declare
 2 begin
 3 xs_security_class.create_security_class(
 4 name => 'hr_privileges',
 5 parent_list => xs$name_list('sys.dml'),
 6 priv_list => xs$privilege_list(xs$privilege('view_salary')));
 7 end;
 8 /

PL/SQL procedure successfully completed.

SQL>
SQL>
SQL>
SQL> -- Create three ACLs to grant privileges for the policy defined later.
SQL> declare
 2 aces xs$ace_list := xs$ace_list();
 3 begin
 4 aces.extend(1);
 5
 6 -- EMP_ACL: This ACL grants employee the privileges to view an
employee's
 7 -- own record including SALARY column.
 8 aces(1) := xs$ace_type(privilege_list =>
xs$name_list('select','view_salary'),
 9 principal_name => 'employee');
 10
 11 xs_acl.create_acl(name => 'emp_acl',
 12 ace_list => aces,
 13 sec_class => 'hr_privileges');
 14
 15 -- IT_ACL: This ACL grants it_engineer the privilege to view the
employee
 16 -- records in IT department, but it does not grant the
VIEW_SALARY
 17 -- privilege that is required for access to SALARY column.
 18 aces(1) := xs$ace_type(privilege_list => xs$name_list('select'),
 19 principal_name => 'it_engineer');

Appendix C
Generated Log Files for Each Script

C-15

 20
 21 xs_acl.create_acl(name => 'it_acl',
 22 ace_list => aces,
 23 sec_class => 'hr_privileges');
 24
 25 -- HR_ACL: This ACL grants hr_representative the privileges to
view and update all
 26 -- employees' records including SALARY column.
 27 aces(1):= xs$ace_type(privilege_list => xs$name_list('select',
'insert',
 28 'update', 'delete',
'view_salary'),
 29 principal_name => 'hr_representative');
 30
 31 xs_acl.create_acl(name => 'hr_acl',
 32 ace_list => aces,
 33 sec_class => 'hr_privileges');
 34 end;
 35 /

PL/SQL procedure successfully completed.

SQL>
SQL>
SQL>
SQL> --
SQL> -- 3. SETUP - Data security policy
SQL> --
SQL> -- Create data security policy for EMPLOYEE table. The policy defines
three
SQL> -- realm constraints and a column constraint that protects SALARY
column.
SQL> declare
 2 realms xs$realm_constraint_list := xs$realm_constraint_list();
 3 cols xs$column_constraint_list := xs$column_constraint_list();
 4 begin
 5 realms.extend(3);
 6
 7 -- Realm #1: Only the employee's own record.
 8 -- employee can view the realm including SALARY column.
 9 realms(1) := xs$realm_constraint_type(
 10 realm => 'email = xs_sys_context(''xs$session'',''username'')',
 11 acl_list => xs$name_list('emp_acl'));
 12
 13 -- Realm #2: The records in the IT department.
 14 -- it_engineer can view the realm excluding SALARY column.
 15 realms(2) := xs$realm_constraint_type(
 16 realm => 'department_id = 60',
 17 acl_list => xs$name_list('it_acl'));
 18
 19 -- Realm #3: All the records.
 20 -- hr_representative can view and update the realm
including SALARY column.
 21 realms(3) := xs$realm_constraint_type(
 22 realm => '1 = 1',

Appendix C
Generated Log Files for Each Script

C-16

 23 acl_list => xs$name_list('hr_acl'));
 24
 25 -- Column constraint protects SALARY column by requiring VIEW_SALARY
 26 -- privilege.
 27 cols.extend(1);
 28 cols(1) := xs$column_constraint_type(
 29 column_list => xs$list('salary'),
 30 privilege => 'view_salary');
 31
 32 xs_data_security.create_policy(
 33 name => 'employees_ds',
 34 realm_constraint_list => realms,
 35 column_constraint_list => cols);
 36 end;
 37 /

PL/SQL procedure successfully completed.

SQL>
SQL>
SQL>
SQL> -- Apply the data security policy to the table.
SQL> begin
 2 xs_data_security.apply_object_policy(
 3 policy => 'employees_ds',
 4 schema => 'hr',
 5 object =>'employees');
 6 end;
 7 /

PL/SQL procedure successfully completed.

SQL>
SQL>
SQL>
SQL> --
SQL> -- 4. SETUP - Validate the objects we have set up.
SQL> --
SQL> set serveroutput on;
SQL> begin
 2 if (xs_diag.validate_workspace()) then
 3 dbms_output.put_line('All configurations are correct.');
 4 else
 5 dbms_output.put_line('Some configurations are incorrect.');
 6 end if;
 7 end;
 8 /
Some configurations are incorrect.

PL/SQL procedure successfully completed.

SQL> -- XS$VALIDATION_TABLE contains validation errors if any.
SQL> -- Expect no rows selected.
SQL> select * from xs$validation_table order by 1, 2, 3, 4;

Appendix C
Generated Log Files for Each Script

C-17

 CODE

DESCRIPTION

OBJECT

NOTE

 -1020
No ACE in the ACL
[ACL "SYS"."NETWORK_ACL_30D45882EF095A86E053B0AAE80AF5F8"]

1 row selected.

SQL>
SQL>
SQL> --
SQL> -- 5. SETUP - additional configuration for Java demo.
SQL> --
SQL>
SQL> connect sys/&passwd as sysdba
Connected.
SQL>
SQL> -- create a session administrator who has only
SQL> -- RAS session administration privilege (no data privilege),
SQL> -- and is responsible to manage RAS session for each application user.
SQL> grant xs_session_admin, create session to hr_session identified by
hr_session;

Grant succeeded.

SQL> grant create session to hr_common identified by hr_common;

Grant succeeded.

SQL>
SQL> -- craete a dispatcher user for java demo, to set up session for
application user
SQL> exec xs_principal.create_user(name=>'dispatcher', schema=>'HR');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.set_password('dispatcher', 'welcome1');

PL/SQL procedure successfully completed.

SQL> exec xs_principal.grant_roles('dispatcher', 'XSCONNECT');

PL/SQL procedure successfully completed.

Appendix C
Generated Log Files for Each Script

C-18

SQL> exec xs_principal.grant_roles('dispatcher', 'xsdispatcher');

PL/SQL procedure successfully completed.

SQL>
SQL> exit

hrdemo.log
The hrdemo.log file.

SQL> @hrdemo
SQL>
SQL>
SQL> --
SQL> -- HR Demo - PL/SQL with RAS direct logon user
SQL> --
SQL> -- This demo shows RAS runtime, using RAS direct logon user.
SQL> -- Each user directly connects to database and accesses employee
table.
SQL> -- RAS policy is automaticlly enforced.
SQL> ---
SQL>
SQL> -- Connect as DAUSTIN, who has only employee and it_engineer role
SQL> conn daustin/welcome1;
Connected.
SQL>
SQL> SET SECUREDCOL ON UNAUTH *******
SQL>
SQL> -- DAUSTIN can view the records in IT department, but can only view
his own
SQL> -- SALARY column.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees order by email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
AHUNOLD Alexander Hunold 60 102 *******
BERNST Bruce Ernst 60 103 *******
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 *******
VPATABAL Valli Pataballa 60 103 *******

5 rows selected.

SQL>
SQL>
SQL> SET SECUREDCOL OFF
SQL>
SQL>
SQL> -- DAUSTIN cannot update the record.
SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

0 rows updated.

Appendix C
Generated Log Files for Each Script

C-19

SQL>
SQL> -- Record is not changed.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
DAUSTIN David Austin 60 103 4800

1 row selected.

SQL>
SQL>
SQL>
SQL> -- Connect as SMAVRIS, who has both employee and hr_representative
role.
SQL> conn smavris/welcome1;
Connected.
SQL>
SQL> -- SMAVRIS can view all the records including SALARY column.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

SQL>
SQL> -- EMPLOYEES table has 107 rows, we expect to see all of them.
SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

SQL>
SQL>
SQL>
SQL> -- SMAVRIS can update the record.
SQL> update employees set manager_id = 102 where email = 'DAUSTIN';

1 row updated.

SQL>

Appendix C
Generated Log Files for Each Script

C-20

SQL> -- Record is changed.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where email = 'DAUSTIN';

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
DAUSTIN David Austin 60 102 4800

1 row selected.

SQL>
SQL> -- change the record back to the original.
SQL> update employees set manager_id = 103 where email = 'DAUSTIN';

1 row updated.

SQL>
SQL> exit

hrdemo_run_sess.log
The hrdemo_run_sess.log file.

SQL> @hrdemo_session
SQL>
SQL>
SQL> --
SQL> -- HR Demo - PL/SQL with Session API
SQL> --
SQL> -- This demo shows RAS runtime, using RAS user as application user.
SQL> -- The user does not logon to database, but a RAS session is created
SQL> -- and attached for each user before accessing employee table.
SQL> ---
SQL>
SQL> -- Connect as RAS session administrator
SQL> connect hr_session/hr_session;
Connected.
SQL>
SQL> -- Variable used to remember the session ID;
SQL> var gsessionid varchar2(32);
SQL>
SQL> -- Create an application session for SMARVIS and attach to it.
SQL> declare
 2 sessionid raw(16);
 3 begin
 4 dbms_xs_sessions.create_session('SMAVRIS', sessionid);
 5 :gsessionid := rawtohex(sessionid);
 6 dbms_xs_sessions.attach_session(sessionid, null);
 7 end ;
 8 /

PL/SQL procedure successfully completed.

SQL>

Appendix C
Generated Log Files for Each Script

C-21

SQL> -- Display the current user, it should be SMAVRIS now.
SQL> select xs_sys_context('xs$session','username') from dual;

XS_SYS_CONTEXT('XS$SESSION','USERNAME')

SMAVRIS

1 row selected.

SQL>
SQL> -- Display the enabled application roles and database roles.
SQL> select role_name from v$xs_session_roles union
 2 select role from session_roles order by 1;

ROLE_NAME

DB_EMP
EMPLOYEE
HR_REPRESENTATIVE
XSCONNECT
XSPUBLIC
XS_CONNECT

6 rows selected.

SQL>
SQL> -- SMAVRIS can view all the records including SALARY column.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

SQL>
SQL> -- EMPLOYEES table has 107 rows, we expect to see all of them.
SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

SQL>

Appendix C
Generated Log Files for Each Script

C-22

SQL> -- Disable hr_representative role
SQL> exec dbms_xs_sessions.disable_role('hr_representative');

PL/SQL procedure successfully completed.

SQL>
SQL> -- SMAVRIS should only be able to see her own record.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500

1 row selected.

SQL>
SQL>
SQL> -- Enable HR_ROLE
SQL> exec dbms_xs_sessions.enable_role('hr_representative');

PL/SQL procedure successfully completed.

SQL>
SQL> -- SMAVRIS can view all the records again.
SQL> select email, first_name, last_name, department_id, manager_id, salary
 2 from employees where department_id = 60 or department_id = 40
 3 order by department_id, email;

EMAIL FIRST_NAME LAST_NAME DEPARTMENT_ID MANAGER_ID SALARY
---------- --------------- --------------- ------------- ---------- -------
SMAVRIS Susan Mavris 40 101 6500
AHUNOLD Alexander Hunold 60 102 9000
BERNST Bruce Ernst 60 103 6000
DAUSTIN David Austin 60 103 4800
DLORENTZ Diana Lorentz 60 103 4200
VPATABAL Valli Pataballa 60 103 4800

6 rows selected.

SQL>
SQL> -- EMPLOYEES table has 107 rows, we expect to see all of them.
SQL> select count(*) from employees;

 COUNT(*)

 107

1 row selected.

SQL>
SQL> -- Detach and destroy the application session.
SQL> declare
 2 sessionid raw(16);

Appendix C
Generated Log Files for Each Script

C-23

 3 begin
 4 sessionid := hextoraw(:gsessionid);
 5 dbms_xs_sessions.detach_session;
 6 dbms_xs_sessions.destroy_session(sessionid);
 7 end;
 8 /

PL/SQL procedure successfully completed.

SQL>
SQL> exit

hrdemo.log
The Java hrdemo.log file.

Query HR.EMPLOYEES table as user "DAUSTIN"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| *****| false| false
 BERNST| Bruce| Ernst| 60| *****| false| false
 DAUSTIN| David| Austin| 60| 4800| false| true
 DLORENTZ| Diana| Lorentz| 60| *****| false| false
 VPATABAL| Valli| Pataballa| 60| *****| false| false

Query HR.EMPLOYEES table as user "SMAVRIS"
 EMAIL | FIRST_NAME | LAST_NAME | DEPT | SALARY | UPDATE | VIEW_SALARY
 AHUNOLD| Alexander| Hunold| 60| 9000| true| true
 BERNST| Bruce| Ernst| 60| 6000| true| true
 DAUSTIN| David| Austin| 60| 4800| true| true
 DFAVIET| Daniel| Faviet| 100| 9000| true| true
 DLORENTZ| Diana| Lorentz| 60| 4200| true| true
 ISCIARRA| Ismael| Sciarra| 100| 7700| true| true
 JCHEN| John| Chen| 100| 8200| true| true
 JMURMAN| Jose Manuel| Urman| 100| 7800| true| true
 LPOPP| Luis| Popp| 100| 6900| true| true
 NGREENBE| Nancy| Greenberg| 100| 12008| true| true
 SMAVRIS| Susan| Mavris| 40| 6500| true| true
 VPATABAL| Valli| Pataballa| 60| 4800| true| true

hrdemo_clean.log
The hrdemo_clean.log file.

SQL> @hrdemo_clean
SQL>
SQL> define passwd=&1
Enter value for 1: test
SQL>
SQL> connect hr/hr;
Connected.
SQL>
SQL> -- Remove policy from the table.
SQL> begin
 2 xs_data_security.remove_object_policy(policy=>'employees_ds',
 3 schema=>'hr',
object=>'employees');

Appendix C
Generated Log Files for Each Script

C-24

 4 end;
 5 /

PL/SQL procedure successfully completed.

SQL>
SQL> -- Delete security class and ACLs
SQL> exec xs_security_class.delete_security_class('hr_privileges',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_acl.delete_acl('emp_acl', xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_acl.delete_acl('it_acl', xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_acl.delete_acl('hr_acl', xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Delete data security policy
SQL> exec xs_data_security.delete_policy('employees_ds',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL>
SQL> connect sys/&passwd as sysdba
Connected.
SQL> -- Delete application users and roles
SQL> exec xs_principal.delete_principal('employee',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_principal.delete_principal('hr_representative',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_principal.delete_principal('it_engineer',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL> exec xs_principal.delete_principal('smavris',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

Appendix C
Generated Log Files for Each Script

C-25

SQL> exec xs_principal.delete_principal('daustin',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL>
SQL> -- Delete database role
SQL> drop role db_emp;

Role dropped.

SQL>
SQL> -- Delete session administrator
SQL> drop user hr_session;

User dropped.

SQL> -- Delete the common user used to connect to DB
SQL> drop user hr_common;

User dropped.

SQL>
SQL> -- Delete dispatcher
SQL> exec xs_principal.delete_principal('dispatcher',
xs_admin_util.cascade_option);

PL/SQL procedure successfully completed.

SQL>
SQL> exit

Appendix C
Generated Log Files for Each Script

C-26

D
Troubleshooting Oracle Database Real
Application Security

This appendix contains:

• About Real Application Security Diagnostics

• About Event-Based Tracing of Real Application Security Components

• About Exception State Dump Information

• About Session Statistics

• Using Middle-Tier Tracing

About Real Application Security Diagnostics
Real Application Security uses an integrated infrastructure that spans across back-end
databases, application servers, and application instances. Real Application Security
components include diagnostic capabilities that enable you to locate, diagnose, and
resolve problems in a Real Application Security system.

Real Application Security diagnostics make use of the database Diagnostic
Framework (DFW) available in Oracle Database 12c Release 1 (12.1) and later.
Functionality diagnostics allow you to track, investigate, and resolve functionality
failures. You can use exception state dumps, event-based tracing, or default tracing to
study and resolve functionality issues. Performance diagnostics enable you to identify
and resolve performance issues.

The following sections discuss functionality and performance diagnostic techniques
used in Real Application Security systems:

• About Using Validation APIs

• How to Check Which ACLs Are Associated with a Row for the Current User

• How to Find If a Privilege Is Granted in an ACL to a User

• About Exception State Dumps

• About Event-Based Tracing

• About In-Memory Tracing

• About Statistics

About Using Validation APIs
You should always validate objects after they are created. This includes objects, such
as principals, security classes, ACLs, data security policies, and namespaces. You
can also validate all these objects that exist in a workspace in a single operation. The
XS_DIAG package includes subprograms that you can use to diagnose potential
problems in any of these created objects. See "XS_DIAG Package" for more

D-1

information. These packages are briefly described in the following table with links to
each validation subprogram where examples of their usage are shown.

Table D-1 Summary of XS_DIAG Subprograms

Subprogram Description

VALIDATE_PRINCIPAL Function Validates the principal.

VALIDATE_SECURITY_CLASS Function Validates the security class.

VALIDATE_ACL Function Validates the ACL.

VALIDATE_DATA_SECURITY Function Validates the data security policy or validates the
data security policy against a specific table.

VALIDATE_NAMESPACE_TEMPLATE
Function

Validates the namespace template.

VALIDATE_WORKSPACE Function Validates an entire workspace.

How to Check Which ACLs Are Associated with a Row for the Current
User

To find which ACLs are associated with a particular row for the current user, use the
ORA_GET_ACLIDS function. The ORA_GET_ACLIDS function returns a list of ACL IDS
associated with a row instance of data security policy enabled tables for the current
application user. If access to the current row has been granted, this function captures
all ACL identifiers that are associated with the matching data realm constraints. See
"ORA_GET_ACLIDS Function" for reference information and "About Checking ACLs
for a Privilege" for tutorial information.

How to Find If a Privilege Is Granted in an ACL to a User
To find if a privilege is granted in an ACL, use the ORA_CHECK_ACL function. The
ORA_CHECKACL function checks whether an application user has the queried application
privileges according to a list of ACLs. If the specified application privileges have been
granted to the application user, ORA_CHECKACL returns 1. If they are not granted to the
application user, then it returns 0. See "ORA_CHECK_ACL Function" for reference
information and "About Checking ACLs for a Privilege" for tutorial information.

To list the ACLIDs associated with each row of a table, for example, the EMPLOYEE
table, the user can use the following query:

select ORA_GET_ACLIDS(emp) from EMPLOYEE emp;

To list the result if a privilege, for example SELECT, is granted for each row of the
EMPLOYEE table, the user can perform the following query:

select ORA_CHECK_ACL(ORA_GET_ACLIDS(emp), 'SELECT') from EMPLOYEE emp;

About Exception State Dumps
When an exception occurs, the state information for Real Application Security
components is dumped into trace files. Exception state dumps are analogous to crash
site evidence for a plane crash.

Appendix D
About Real Application Security Diagnostics

D-2

A failure, like an internal error or server crash, causes a Diagnostic Data Extraction
(DDE) routine to be invoked for each component. This dumps the current system,
session, and process state information into trace files. You can later analyze the cause
of failure using the state information dumped into trace files.

About Event-Based Tracing
Event-based tracing can be used to track events related to specific Real Application
Security components. Event-based tracing helps in tracing the events that led up to a
failure. For example, event number 46148 is used to trace application session events,
such as createSession and attachSession.

About In-Memory Tracing
In-memory tracing is a proactive tracing mechanism that is used do diagnose
intermittent and hard to replicate errors. The in-memory tracing mechanism records
component state changes and events in memory buffers. This is dumped to a trace file
when a failure occurs. In-memory tracing is analogous to black box data that is used
for plane crash investigation.

About Statistics
Real Application Security component statistics help identify performance issues in a
Real Application Security system. Statistics include key data like the number of
session create operations, principal invalidations, role-enabling operations, and so on.

About Event-Based Tracing of Real Application Security
Components

Event-based tracing can be used to track events related to specific Real Application
Security components. Table D-2 lists the events assigned to Real Application Security
components.

Table D-2 Real Application Security Components and Events

Real Application Security
Components

Event (Oracle Error #)

Application Sessions

(XSSESSION)

46148

Application Principals

(XSPRINCIPAL)

46150

Security Classes

(XSSECCLASS)

46149

ACLs

(XSACL)

46110

Data Security

(XSXDS)

46049

Appendix D
About Event-Based Tracing of Real Application Security Components

D-3

Table D-2 (Cont.) Real Application Security Components and Events

Real Application Security
Components

Event (Oracle Error #)

Mid-Tier Caches

(XS_MIDTIER)

46151

Data Security VPD Rewrite

(XSVPD)

10730

The following sections describe event-based tracing for individual Real Application
Security components:

• About Application Sessions (XSSESSION) Event-Based Tracing

• About Application Principals (XSPRINCIPAL) Event-Based Tracing

• About Security Classes (XSSECCLASS) Event-Based Tracing

• About ACL (XSACL) Event-Based Tracing

• About Data Security (XSXDS and XSVPD) Event-Based Tracing

About Application Sessions (XSSESSION) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSSESSION
component:

ALTER SESSION SET EVENTS '46148 trace name context forever, level="1", level="2",
level="3"';

Here, 46148 is the Oracle Database error number associated with XSSESSION events.
You can set a trace level of 1 (low), 2 (medium), or 3 (high). Table D-3 describes the
trace levels.

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSSESSION] disk=[low, medium, high]'

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Table D-3 shows the XSSESSION trace contents for each trace level.

Appendix D
About Event-Based Tracing of Real Application Security Components

D-4

Table D-3 XSSESSION Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

createSession Includes the following:

• User name
• Session Id for the

session

Includes the
following in
addition to trace
level 1 items:

• User GUID
• Session

attributes
such as
create time,
last
authentication
time, global
variable
namespace,
and cookie
information

Same as level 2

attachSession Includes the following:

• User name
• Session Id for the

session

Includes the
following in
addition to trace
level 1 items:

• Roles

Includes the following
in addition to trace
level 1 and 2 items:

• Application
namespace with
attribute values

detachSession Includes the following:

• User name
• Session Id for the

session before
detaching

Same as level 1 Same as levels 1 and
2

createNamespace Includes the following:

• User name
• Session Id
• Application

namespace with
attribute values

Includes the
following in
addition to trace
level 1 items:

• Session
attributes
such as
create time,
last
authentication
time, global
variable
namespace,
and cookie
information

Includes the following
in addition to trace
level 1 and 2 items:

• Namespace
handler

switchUser Includes the following:

• User name
• Session Id for the

session

Includes the
following in
addition to trace
level 1 items:

• Roles

Includes the following
in addition to trace
level 1 and 2 items:

• Application
namespace with
attribute values

Appendix D
About Event-Based Tracing of Real Application Security Components

D-5

Table D-3 (Cont.) XSSESSION Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

assignUser Includes the following:

• User name
• Session Id for the

session

Includes the
following in
addition to trace
level 1 items:

• Roles

Includes the following
in addition to trace
level 1 and 2 items:

• Application
namespace with
attribute values

setAttribute Includes the following:

• Namespace name
• Name and value of

the given attribute
before and after the
setAttribute
operation

Same as level 1 Same as levels 1 and
2

deleteAttribute Includes the following:

• Namespace name
and

• Name and value of
the given attribute
before and after the
deleteAttribute
operation

Same as level 1 Same as levels 1 and
2

In addition to the preceding event, you can use the named event, xs_session_state to
dump the current state of application sessions. Use the following SQL statement to
enable tracing for the xs_session_state event:

ALTER SESSION SET EVENTS 'immediate eventdump(xs_session_state)';

The event dump contains information on all session attributes in the User Global Area
(UGA) memory, such as session Id, user name, create time, last authentication time,
global variable namespace, and so on. The dump does not contain information on
secure items such as passwords.

About Application Principals (XSPRINCIPAL) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSPRINCIPAL
component:

ALTER SESSION SET EVENTS '46150 trace name context forever, level="1", level="2",
level="3"';

Here, 46150 is the Oracle Database error number associated with XSPRINCIPAL events.
You can set a trace level of 1 (low), 2 (medium), or 3 (high). Table D-4 describes the
trace levels.

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSPRINCIPAL] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

Appendix D
About Event-Based Tracing of Real Application Security Components

D-6

SHOW PARAMETER USER_DUMP_DEST;

Table D-4 shows the XSPRINCIPAL trace contents for each trace level.

Table D-4 XSPRINCIPAL Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

Enable Role Includes the following:

• User name
• Session Id for the

session

Includes the
following in addition
to trace level 1
items:

• If the Enable
Role operation
fails, then the
cause is
logged. For
example, the
operation may
fail if the role
does not exist
or the user has
not been
granted the
role

Same as levels 1 and
2

Disable Role Includes the following:

• All user enabled roles
in the session after
the role is disabled

Includes the
following in addition
to trace level 1
items:

• If the Disable
Role operation
fails, then the
cause is
logged.

Same as levels 1 and
2

Role Graph Traverse Includes the following:

• User name
• Session Id for the

session

Same as level 1 Same as levels 1 and
2

About Security Classes (XSSECCLASS) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSSECCLASS
component:

ALTER SESSION SET EVENTS '46149 trace name context forever, level="1", level="2",
level="3"';

Here, 46149 is the Oracle Database error number associated with XSSECCLASS events.
You can set a trace level of 1 (low), 2 (medium), or 3 (high).

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSSECCLASS] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Appendix D
About Event-Based Tracing of Real Application Security Components

D-7

The trace information includes the following:

• Content from the Security Class document, such as parent classes, child classes,
privileges, and aggregate privileges

• For security class deletions, it includes information on parent classes that require
invalidation from the cache

• Exception related information, such as security class validation errors

About ACL (XSACL) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSACL
component:

ALTER SESSION SET EVENTS '46110 trace name context forever, level="1", level="2",
level="3"';

Here, 46110 is the Oracle Database error number associated with XSACL events. You
can set a trace level of 1 (low), 2 (medium), or 3 (high).

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSACL] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Table D-5 shows the XSACL trace contents for each trace level.

Table D-5 XSACL Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

Check privilege
against ACLs

Includes the following:

• ACL results during
cursor sharing

Includes the
following in addition
to trace level 1
items:

• ACL
evaluation
including ACL
loading

Same as levels 1 and
2

About Data Security (XSXDS and XSVPD) Event-Based Tracing
Use the following SQL statement to enable event-based tracing for the XSXDS
component:

ALTER SESSION SET EVENTS '46049 trace name context forever, level="1", level="2",
level="3"';

Here, 46049 is the Oracle Database error number associated with XSXDS events. You
can set a trace level of 1 (low), 2 (medium), or 3 (high). Table D-6 describes the trace
levels.

Alternatively, you can use the following statement:

Appendix D
About Event-Based Tracing of Real Application Security Components

D-8

ALTER SESSION SET EVENTS 'TRACE [XSXDS] disk=[low, medium, high]';

You can find the location of this trace file by using the following SQL statement:

SHOW PARAMETER USER_DUMP_DEST;

Table D-6 shows the XSXDS trace contents for each trace level.

Table D-6 XSXDS Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

Data Security
Document (DSD)
loaded into System
Global Area (SGA)

Includes the following:

• Security data realm
constraint rules with
resolved parameter
values

Includes the
following in addition
to trace level 1
items:

• Access Control
List (ACL)
identifiers

Same as levels 1 and
2

Use the following SQL statement to enable event-based tracing for the XSVPD
component:

ALTER SESSION SET EVENTS '10730 trace name context forever level [1, 2, 3]';

Here, 10730 is the Oracle Database error number associated with XSVPD events. You
can set a trace level of 1 (low), 2 (medium), or 3 (high). Table D-6 describes the trace
levels.

Alternatively, you can use the following statement:

ALTER SESSION SET EVENTS 'TRACE [XSVPD] disk=[low, medium, high]';

Table D-6 shows the XSVPD trace contents for each trace level.

Table D-7 XSVPD Trace Contents

Event Trace Level 1 (Low) Trace Level 2
(Medium)

Trace Level 3 (High)

• Data Security
Document (DSD)
loaded into
System Global
Area (SGA)

• All subsequent
SQL statements
issued in the
current database
session

Includes the following:

• VPD view of XDS
enabled objects
during hard-parse,
soft-parse, or SQL
statement parsing

• Data realm constraint
rules with resolved
parameter values,
their corresponding
ACL paths and ACL
identifiers

Includes the
following in addition
to trace level 1
items:

• Current
application
session user
name and
enabled roles
when the SQL
statement is
parsed or run

Includes the following
in addition to trace
level 1 items:

• Contents of all
ACLs associated
with data realm
constraints, which
are associated
with the XDS
enabled objects in
the query

Appendix D
About Event-Based Tracing of Real Application Security Components

D-9

About Exception State Dump Information
When an exception occurs, the state information for Real Application Security
components is dumped into trace files. Table D-8 describes the information dumped
for individual Real Application Security components:

Table D-8 Real Application Security Components and First-Failure Dump
Information

Real Application
Security Component

Exception Related Information

XSSESSION • Application session state information

XSPRINCIPAL • Application session role lists (all roles, enabled roles, disabled
roles, and database roles of the application session)

• Role Graph hash table of the system
• User hash table with direct roles granted to the users in the

system
• Principal row cache state

About Session Statistics
Real Application Security component statistics help identify performance issues in a
Real Application Security system. Table D-9 describes the statistics collected for
individual Real Application Security components.

Table D-9 Real Application Security Components and Performance Statistics

Real Application
Security Component

Performance Statistics Collected

XSSESSION • Number of application sessions created
• Number of application sessions attached and detached
• Number of namespaces created
• Number of user callbacks executed

XSPRINCIPAL • Number of roles enabled/disabled
• Number of principal cache misses
• Number of principal invalidations

Mid-tier caches • Number of session cache synchronizations
• Number of principal cache synchronizations
• Number of security class cache synchronizations

Using Middle-Tier Tracing
Middle-tier tracing uses the package oracle.security.xs. It can be done as follows:

1. Specify logging options in a property file. For example,

handlers= java.util.logging.ConsoleHandler
.level= SEVERE
java.util.logging.ConsoleHandler.level = FINEST

Appendix D
About Exception State Dump Information

D-10

java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter
oracle.security.xs.level = FINEST

2. Apply the preceding configuration during JVM start up.

java -Djava.util.logging.config.file=logging.properties

The log output will be generated to the handlers (file, console) specified in the
configuration.

Real Application Security user can use mid-tier java API for authentication,
authorization, session management, and so forth. In case the user needs to debug on
interfacing with mid-tier API, trace can be turned on. The trace can show basic call
stacks, function involved, time used, parameters passed, returning value, and so forth.

Appendix D
Using Middle-Tier Tracing

D-11

Glossary

access control entry (ACE)
An entry in the access control list that grants or denies access to a given principal.
One or more ACEs are listed within an access control list (ACL), in which the ordering
of the ACEs is relevant.

access control list (ACL)
A list of access control entries that determines which principals have access to a given
resource or resources. In Oracle Database Real Application Security, you use ACLs to
define user privileges.

ACE
See access control entry (ACE).

ACL
See access control list (ACL).

aggregate privilege
A privilege that contains other privileges. When an aggregate privilege has been
granted or denied, then all of its child privileges are granted or denied as well.

application role
A role that can only be granted to a application user or to another application role.

application session
A user session that contains information pertinent only to the application. Unlike
traditional "heavyweight" database sessions, an application session does not hold its
own database resources such as transactions and cursors.

application user
A user account that does not own a schema and can create a application session
through the middle tier to the database.

column level security
The ability to apply specific privileges to a table column.

custom privilege
A privilege not predefined by Oracle Database. See also system privilege.

Glossary-1

data realm
A set of rows within a database table whose access you control by associating it with
an access control list (ACL). It is comprised of one or more object instances. See also
dynamic data realm constraint and static data realm constraint.

database role
A role that can only be granted to a database user. It is also called a heavyweight role.
See also application role.

database user
A user account that is created within the database and has a schema. It is also called
a heavyweight user. See also application user.

dynamic ACL
An access control list that has been associated with a dynamic data realm constraint.

dynamic application role
A role that is enabled only under certain conditions, for example, when a user has
logged on using SSL, or during a specified period.

dynamic data realm constraint
An data realm whose WHERE predicate is rerun each time the user performs a query on
the data realm constraint data. See also static data realm constraint.

function security
The mechanism by which user access to an applications functionality is controlled. For
example, for Oracle Database Real Application Security, use the checkPrivilege()
method to check the privilege on the ACL for a row to determine if a specific privilege
on one or more given ACLs is associated with that row. See About the Check Privilege
API for more information.

globally unique identifier (GUID)
The external ID that applications can use to manage the user's session information.
This identifier is not guaranteed to be unique across all tiers, but the number of unique
keys that comprises it is so large that the chances of it being duplicated are small. See
also unique identifier (UID).

GUID
See globally unique identifier (GUID).

heavyweight role
A traditional database role.

heavyweight user
A traditional database user account that owns a schema.

Glossary

Glossary-2

namespace
A container consisting of attribute-value pairs that reflects the state of the application
session.

object instance
A single relational table row that is part of an data realm. It is identified by its primary
key value.

password verifier
A hashed version of a clear text password, which is then encoded as a BASE64
encoded string.

principal
A user or collection of users alternately called a group or a role. See also application
user and application role.

privilege
A right or permission that can be granted or denied to a principal. See also aggregate
privilege, custom privilege, and system privilege.

security class
A named collection of privileges that can be associated with an ACL.

static ACL
An access control list that has been associated with a static data realm constraint.

static data realm constraint
An data realm whose WHERE predicate is stored in cache, so that it is not rerun each
time the user performs a query on the data realm constraint data. See also dynamic
data realm constraint.

system privilege
Predefined privilege supplied by Oracle Database. See also custom privilege.

unique identifier (UID)
A unique internal identifier that Oracle Database uses to track the user or role. It is
used to manage the user's session information across the database enterprise. See
also globally unique identifier (GUID).

UID
See unique identifier (UID).

user switch
The ability of an application user to proxy as another user. The application state (that
is, namespaces and attributes) is maintained from the previous user, but the security
context reflects that of the new user.

Glossary

Glossary-3

Index

A
access control entry (ACE)

about, 1-8
definition, 4-8

access control lists (ACL)
about, 1-8
directories

trace files, using to resolve predicate
errors, 5-7

dynamic data realm constraints
about, 5-7
ACL evaluation order, 5-12

evaluation order, 5-12
static data realm constraints

ACL evaluation order, 5-12
static data realms

about, 5-6
user-managed

example, 5-11
ACE

definition, 4-8
evaluation order, 4-13

acl
troubleshooting, D-8

ACL
adding ACE, 4-10
binding, 4-16
changing security class, 4-10
constraining inheritance, 4-14
create, 4-9
extending inheritance, 4-14
identifiers

master-detail tables, retrieving ACL
identifiers for, 10-4

inheritance, 4-13
constraining, 4-14
extending, 4-14

inheritance|ACL
changing parent ACL, 4-10

multilevel authentication, 4-12
removing ACL, 4-10
scope

definition, 4-5
ACLS

See access control lists
ACLs and ACEs

about, 4-8
creating, 4-9

aggregate privilege
about, 1-7
benefits, 1-8
definition, 4-1

ALL grant, 4-3
ALL privilege, 4-3
ALL_XDS_ACL_REFRESH view, 9-34
ALL_XDS_ACL_REFSTAT view, 9-35
ALL_XDS_LATEST_ACL_REFSTAT view, 9-36
ALL_XS_ACES view, 9-20
ALL_XS_ACL_PARAMETERS view, 9-27
ALL_XS_ACLS view, 9-18
ALL_XS_APPLIED_POLICIES view, 9-30
ALL_XS_COLUMN_CONSTRAINTS view, 9-29
ALL_XS_IMPLIED_PRIVILEGES view, 9-13
ALL_XS_INHERITED_REALMS view, 9-25
ALL_XS_POLICIES view, 9-22
ALL_XS_PRIVILEGES view, 9-12
ALL_XS_REALM_CONSTRAINTS view, 9-23
ALL_XS_SECURITY_CLASS_DEP view, 9-16
ALL_XS_SECURITY_CLASSES view, 9-15
anonymous user, 7-1
application integration

support for external users and roles, 7-1
application privileges

about, 1-7
granting to principles, 2-17

application roles, 1-5, 2-12
about, 1-5, 2-12
creating dynamic role, 2-13, 2-15
creating regular role, 2-13, 2-14
granting database role to an application role,

2-18
granting to another application role, 2-18
granting to existing application user, 2-18
granting to new application user, 2-17
using effective dates, 2-16
validating, 2-15

application sessions, 3-1
about, 3-1
advantages, 3-3

Index-1

application sessions (continued)
attaching, 3-5
cookies, setting for, 3-7
creating, 3-2, 3-3, 11-4
creating anonymous application session, 3-4
database session

attaching to, 11-5
detaching from, 11-19

destroying, 11-20
event handling, 3-11
global callback events, using, 3-11
namespace

creating, 11-9
deleting, 11-14

namespaces
attribute values, getting, 11-12
attribute values, setting, 11-11
attributes, getting, 3-24
attributes, setting, 3-23
deleting, 3-26

roles
disabling for specified session, 11-16
enabling for specified session, 11-15

roles, disabling from session, 3-27
roles, enabling for session, 3-27
saving, 11-19
security context, setting, 11-8
session cookie

setting, 11-16
session state manipulating, 3-15
switch user, 11-8
troubleshooting, D-4
users, assigning to, 3-7
users, creating namespace templates, 3-17
users, custom attributes, 3-25
users, destroying, 3-15
users, detaching from, 3-13
users, initializing namespaces, 3-18–3-21
users, initializing namespaces explicitly, 3-22
users, switching to, 3-8

application sessions in the database
architecture figure, 3-2

application user roles
application sessions, disabling from, 3-27
application sessions, enabling for, 3-27
disabling for specified session, 11-16
enabling for specified session, 11-15

application users, 2-2
about, 1-5, 2-1
application sessions, assigning to, 3-7
application sessions, creating namespace

templates, 3-17
application sessions, custom attributes, 3-25
application sessions, destroying, 3-15
application sessions, detaching from, 3-13

application users (continued)
application sessions, initializing namespaces,

3-18–3-21
application sessions, initializing namespaces

explicitly, 3-22
application sessions, switching to, 3-8
compared with database user, 1-6
creating, 2-2

direct login users, 2-4
creating direct login user, 2-4
definition, 1-5
general procedure, 2-2
modifying, 2-2
validating, 2-12

application users and roles
troubleshooting, D-6

applying
additional application privileges

to a column, 5-8
assigning

an application user to an anonymous
application session, 3-7

attaching
an application session, 3-5

auditing
DBA_XS_AUDIT_POLICY_OPTIONS view,

1-16
DBA_XS_AUDIT_TRAIL view, 1-16
DBA_XS_ENB_AUDIT_POLICIES view, 1-16
in an Oracle Database Real Application

Security environment, 1-16
unified auditing, 1-16, 9-3, 9-4

authentication
multilevel, 4-12
strong, 4-12
weak, 4-12

C
callback event handler procedure

creating, 3-9
checking

ACLs for a privilege, 4-12
checking security attribute

using getSecurityAttribute method
SecurityAttribute returns value

ENABLED, B-6
SecurityAttribute returns value NONE,

B-6
SecurityAttribute returns value

UNKNOWN, B-6
checking user authorization indicator

using getAuthorizationIndicator method
AuthorizationIndicator returns value

NONE, B-7

Index

Index-2

checking user authorization indicator (continued)
using getAuthorizationIndicator method (continued)
AuthorizationIndicator returns value

UNAUTHORIZED, B-7
AuthorizationIndicator returns value

UNKNOWN, B-7
column authorization

JDBCI interface, B-6
OCI interface, B-1

COLUMN_AUTH_INDICATOR function, 10-1
column-level security, 5-8
configuring

an application role, 2-14
application roles, 2-12
application user switch

proxying an application user, 2-10
application users, 2-1
global callback event handlers

for an application session, 3-11
constraining ACL inheritance

definition, 4-14
cookies

application sessions, setting for, 3-7
create views

using BEQUEATH clause, 5-23
creating

ACLs and ACEs, 4-9
anonymous application session, 3-4
application sessions, 3-3
application user accounts, 2-2
application users, 2-2
custom attributes

in application session, 3-25
direct login user, 2-4
dynamic application role, 2-13, 2-15
namespace templates, 3-17
namespaces

using namespace templates, 3-16
regular application role, 2-13, 2-14
security class, 4-4
simple application user account, 2-3

D
data realm constraints

affect on database tables, 5-11
membership methods, 5-5
membership rule (WHERE predicate)

about, 5-5
membership rules

session variables, guideline for, 5-5
parameterized

about, 5-5
types defined by WHERE predicates, 5-5

data realms, 5-6
about, 5-1
definition, 4-15
structure, 5-5

See also dynamic data realms, static data
realms

data security
about, 5-1
ACLs, 4-15
automatic refreshment for static ACL, 11-50
troubleshooting, D-8
with Oracle Database Real Application

Security, 1-4
data security documents

example, 5-2
privileges

security checks, how handled, 5-21
privileges, column-level security, 5-8

data security policy
tables

enabling, 11-48
removing from, 11-47

data security privileges
alter refreshment for static ACL, 11-34, 11-51
automatic refreshment for static ACL, 11-33

database role
about, 1-5

database user
about, 1-5
compared with application user, 1-6

DataSecurity module, 4-16
DBA_XDS_ACL_REFRESH view, 9-36
DBA_XDS_ACL_REFSTAT view, 9-37
DBA_XDS_LATEST_ACL_REFSTAT view, 9-38
DBA_XS_ACES view, 4-9, 4-15, 9-18
DBA_XS_ACL_PARAMETERS view, 9-26
DBA_XS_ACLS view, 4-15, 9-17
DBA_XS_ACTIVE_SESSIONS view, 9-31
DBA_XS_APPLIED_POLICIES view, 9-29
DBA_XS_AUDIT_POLICY_OPTIONS view, 1-16,

9-1
DBA_XS_AUDIT_TRAIL view, 1-16, 9-1
DBA_XS_COLUMN_CONSTRAINTS view, 9-28
DBA_XS_DYNAMIC_ROLES view, 9-9
DBA_XS_ENB_AUDIT_POLICIES view, 1-16,

9-1
DBA_XS_EXTERNAL_PRINICIPALS view, 9-5
DBA_XS_IMPLIED_PRIVILEGES view, 9-12
DBA_XS_INHERITED_REALMS view, 9-24
DBA_XS_MODIFIED_POLICIES view, 9-30
DBA_XS_NS_TEMPLATE_ATTRIBUTES view,

9-34
DBA_XS_NS_TEMPLATES view, 9-33
DBA_XS_OBJECTS view, 9-4
DBA_XS_POLICIES view, 9-21

Index

3

DBA_XS_PRINICIPALS view, 9-5
DBA_XS_PRIVILEGE_GRANTS view, 9-14
DBA_XS_PRIVILEGES view, 4-15, 9-11
DBA_XS_PROXY_ROLES view, 9-10
DBA_XS_REALM_CONSTRAINTS view, 9-22
DBA_XS_ROLE_GRANTS view, 9-10
DBA_XS_ROLES view, 9-8
DBA_XS_SECURITY_CLASS_DEP view, 4-15,

9-15
DBA_XS_SECURITY_CLASSES view, 4-15,

9-14
DBA_XS_SESSION_NS_ATTRIBUTES view,

9-32
DBA_XS_SESSION_ROLES view, 9-32
DBA_XS_SESSIONS view, 9-31
DBA_XS_USERS view, 9-6
DBMS_XS_SESSIONS PL/SQL package

about, 11-1
ADD_GLOBAL_CALLBACK, 11-21
ASSIGN_USER, 3-20
ATTACH_SESSION, 3-19
constants, 11-2
CREATE_ATTRIBUTE, 3-25
CREATE_NAMESPACE, 3-22
CREATE_SESSION, 3-18
DELETE_GLOBAL_CALLBACK, 3-11, 11-23
DELETE_NAMESPACE, 3-26
DESTROY_SESSION, 3-15
DETACH_SESSION, 3-13
DISABLE_ROLE, 3-27
ENABLE_GLOBAL_CALLBACK, 11-22
ENABLE_ROLE, 3-27
GET_ATTRIBUTE, 3-24
object types, constructor functions, 11-2
SAVE_SESSION, 3-13
security model, 11-2
SET_ATTRIBUTE, 3-23
SWITCH_USER, 2-10, 3-21

default security class
definition, 4-5

defining a basic data security policy
implementation tasks, 5-26

disable a data security policy for a table,
5-32

use case, 5-26
deleting

namespaces
in application session, 3-26

destroying
application session, 3-15

detaching
application session

from a traditional database session, 3-13

determining
invoker’s rights use for nested program units

using BEQUEATH clause when creating
views, 5-23

the invoking application user
using SQL functions, 5-25

direct application user accounts
setting password verifiers, 2-6

disabling
application roles

for an application session, 3-27
displaying secure column values

using SQL*Plus SET SECUREDCOL
command, 5-22

dynamic application role, 2-13
dynamic application roles

predefined, 2-15
dynamic data realm constraints

about, 5-7
ACL evaluation order, 5-12

E
enabling

application roles
for application session, 3-27

event handlers, 11-21
See also global callback events

event-based tracing
about, D-3
components, D-3

examples
JDBC

security attributes, checking, B-8
user authorization, checking, B-8

OCI return codes, B-1
Real Application Security policy on master-

detail related tables, 5-14
exception dumps, D-10
exception state dumps, D-2
extending ACL inheritance

definition, 4-14
external roles, 7-1
external users, 7-1

namespaces for, 7-2
session modes, 7-1

secure mode, 7-1
trusted mode, 7-1

external users and external roles
createSession method, 7-2
for application integration, 7-1
session APIs for, 7-2

Index

Index-4

F
firewall, 4-12

authentication, 4-14
foreign_key

specifies foreign key of detail table, 5-13

G
getting

session attributes
in application session, 3-24

global callback events, 11-21
about, 3-11
adding, 11-21
deleting, 11-23
enable or disable, 11-22

granting
application privileges to principles, 2-17
application role

to existing application user, 2-18
to new application role, 2-18
to new application user, 2-17

database role
to an application role, 2-18

I
in-memory tracing, D-3
inheritance

master-detail related tables, 5-13
inheritedFrom element, components, 5-13
initializing

namaspace
when session is attached, 3-19

namespace, 3-20
application user is switched in application

session, 3-21
when session is created, 3-18

namespaces
explicitly, 3-22

J
Java environment

aborting a session, 7-9
assigning a user to a session, 7-7
assigning or switching an application user,

6-6
attaching an application session, 7-4

external role behavior, 7-6
attachng an application session, 6-5
authenticating users using Java APIs, 6-14

Java environment (continued)
authorizing application users using ACLs,

6-14
changing the middle-tier cache size, 6-3

clearing the cache, 6-4
getting the maximum cache idle time, 6-3
getting the maximum cache size, 6-3
removing entries from the cache, 6-4
removing entries from the cache, getting

the high watermark for cache,
6-4

removing entries from the cache, getting
the low watermark for cache, 6-4

removing entries from the cache, setting
the watermark, 6-4

setting the maximum cache size, 6-3
setting the middle-tier cache idle time,

6-3
checking if application role is enabled, 6-8
constructing an ACL identifier, 6-14
creating a session namespace attribute, 6-10
creating a user session, 6-5
creating an application session, 7-2
creating namespaces, 6-8
deleting namespaces, 6-9
deleting session namespace attributes, 6-11
destroying an application session, 6-13
detaching an application session, 6-13
disabling application roles, 6-7
enabling and disabling application roles, 6-7
enabling application roles, 6-7
getting a session namespace attribute, 6-10
getting data privileges associated with a

specific ACL, 6-15
getting the application user ID for the

session, 6-12
getting the Oracle connection associated with

the session, 6-12
getting the session cookie, 6-12
getting the session ID for the session, 6-12
getting the string representation of the

session, 6-12
implicitly creating namespaces, 6-9
initializing the middle tier, 6-1

mid-tier configuration mode, 6-1
privileges for the session manager, 6-1
roles for the session manager, 6-1
using getSessionManager method, 6-1

listing session namespace attributes, 6-10
performing namespace operations as

session manager, 6-11
performing namespace operations as

session user, 6-8
resetting session namespace attributes, 6-11
saving a session, 7-9

Index

5

Java environment (continued)
setting a session namespace attribute, 6-10
setting session cookie as session manager,

6-13
setting session inactivity timeout as session

manager, 6-12
using namespace attributes, 6-9
using the checkAcl method, 6-15

JDBC
column authorization, interface for, B-6

M
master detail data realm

foreign_key
specifies foreign key of detail table, 5-13

parentObjectName element
specifies name of master table, 5-13

parentSchemaName element
specifies name of schema containing

master table, 5-13
primary_key

specifies primary key from master table,
5-13

when element
specifies a predicate for detail table, 5-13

master-detail tables
ACL

identifiers, retrieving, 10-4
inheritedFrom element, components, 5-13
Real Application Security policies

about, 5-13
creating for, 5-14

Materialized View, 5-6
membership rules (WHERE predicate) in data

realm constraints
about, 5-5

membership rules in data realm constraints
session variables, guideline for, 5-5

modifying
application users, 2-2

multilevel authentication, 4-12
definition, 4-12
using, 4-12

N
namespaces

application sessions
attributes, getting, 3-24
attributes, setting, 3-23
creating, 11-9
deleting, 3-26, 11-14

attribute values
getting, 11-12

namespaces (continued)
attribute values (continued)
setting, 11-11

attributes
creating, 11-10
deleting, 11-14
resetting, 11-13

O
OCI parameter handle attribute

OCI_ATTR_XDS_POLICY_STATUS, B-4
OCI_XDS_POLICY_ENABLED value,

B-4
OCI_XDS_POLICY_NONE value, B-4
OCI_XDS_POLICY_UNKNOWN value,

B-4
OCI return codes

ORA-24530
column value is unauthorized to the user,

B-1
ORA-24531

column value authorization is unknown,
B-2

ORA-24536
column authorization unknown, B-2

ORA_CHECK_ACL function, 10-4, D-2
ORA_CHECK_PRIVILEGE function, 10-5
ORA_GET_ACLIDS function

See ORA_GET_ACLIDS function
ORA_INVOKING_USER function

returns name of current database user, 5-25
ORA_INVOKING_USERID function

returns ID of current database user, 5-25
ORA_INVOKING_XS_USER function

returns name of current Real Application
Security application user, 5-25

ORA_INVOKING_XS_USER_GUID function
returns ID of current Real Application

Security application user, 5-25
ORA-24530

column value is unauthorized to the user
OCI return code, B-1

ORA-24531
column value authorization is unknown

OCI return code, B-2
ORA-24536

column authorization unknown
OCI return code, B-2

ORA-28113((colon)) policy predicate has error
message, 5-7

Oracle Call Interface (OCI)
column authorization, interface for, B-1

Oracle Database Real Application Security
about data security, 1-4

Index

Index-6

Oracle Database Real Application Security (continued)
access control entry (ACE), 1-8
access control list (ACL), 1-8
advantages of, 1-2
aggregate privilege, 1-8
application privileges, 1-7
application session concepts, 1-9
architecture, 1-2
data security concepts, 1-3
data security policy, 1-9
flow of design and development, 1-10
principals

users and roles, 1-5
security classes, 1-8
security components of, 1-3
use case scenario example policy, 1-12

component requirements, 1-14
description and security requirements,

1-13
implementation overview, 1-14

what is, 1-1
Oracle Label Security

context established during attach session,
2-7

context established in application session,
3-5

context established in named user’s
application session, 3-7

context switches to target_user session, 3-8
Oracle Virtual Private Database (VPD)

extended for Real Application Security, 5-1
oracle.jdbc.OracleResultSetMetaData interface

getAuthorizationIndicator method
about, B-7
example, B-8

getSecurityAttribute method
about, B-6
example, B-8

P
parameterized ACL, 4-16
parameterized data realm constraints

about, 5-5
parentObjectName element

specifies name of master table, 5-13
parentSchemaName element

specifies name of schema containing master
table, 5-13

password verifiers
direct application user accounts, 2-6

PL/SQL functions
COLUMN_AUTH_INDICATOR, 10-1
XS_SYS_CONTEXT, 10-2

pluggable databases
Oracle Real Application Security support for,

1-17
predefined objects

ACLs
NS_UNRESTRICTED_ACL, A-4
SESSIONACL, A-4
SYSTEMACL, A-4

database roles
PROVISIONER, A-2
XS_CACHE_ADMIN, A-3
XS_NAMESPACE_ADMIN, A-2
XS_SESSION_ADMIN, A-2

dynamic application roles, 2-15
DBMS_AUTH, A-2
DBMS_PASSWD, A-2
EXTERNAL_DBMS_AUTH, A-2
MIDTIER_AUTH, A-2
XSAUTHENTICATED, A-2
XSSWITCH, A-2

namespaces
XS$GLOBAL_VAR, A-3
XS$SESSION, A-3

regular application roles
XSBYPASS, A-1
XSCACHEADMIN, A-1
XSCONNECT, A-2
XSDISPATCHER, A-1
XSNAMESPACEADMIN, A-1
XSPROVISIONER, A-1
XSPUBLIC, A-1
XSSESSIONADMIN, A-1

security classes
DML, A-3
NSTEMPLATE_SC, A-3
SESSION, A-3
SYSTEM, A-3

users
XSGUEST, A-1

primary_key
specifies primary key from master table, 5-13

principals
about, 1-5

privileges
about application, 1-7
check, 4-12
constrain, 4-14
data security documents

columns, applying additional to, 5-8
security checks, how handled, 5-21

R
regular application role, 2-13

Index

7

roles, 1-5, 2-12
dynamic

assigning to user, 11-7
removing from user, 11-7
See also application roles

S
scope, ACL

definition, 4-5
security class

about, 1-8
adding parent|security class

inheritance, 4-5
configuration, 4-3
create, 4-4
definition, 4-4
inheritance, 4-4
inheritance|security class

adding privileges, 4-5
deleting, 4-5
description string, 4-5
removing implied privileges, 4-5
removing parent, 4-5
removing privileges, 4-5

manipulating, 4-5
troubleshooting, D-7

session, 3-1
application, 3-1
IDs

authentication time, updating, 11-17
time-out values, setting, 11-18

statistics, D-10
See also application sessions

Session
isRoleEnabled, 6-8
setCookie, 6-13
setInactivityTimeout, 6-12

session cookie
application sessions

setting, 11-16
session privilege scoping through ACL, 3-28
session service

application configuration of the session filter,
8-7

authorization (checkACL), 8-5
check privilege API, 8-19
deployment, 8-6
domain configuration, 8-8

automatic, 8-10
manual, 8-9
prerequisites, 8-8

namespace APIs, 8-15
namespace operations, 8-4

session service (continued)
Oracle Platform Security Service (OPSS),

8-1
privilege elevation, 8-4
privilege elevation API, 8-14
Real Application Security servlet filter, 8-4
session APIs, 8-4, 8-11
session filter, 8-5
session filter operation, 8-5
supports JavaEE web application

using OPSS as application security
provider, 8-1

SessionNamespace
deleteAttribute, 6-11
toString, 6-9

SET SECUREDCOL command
SQL*Plus

displaying secure column values, 5-22
setting

a cookie for an application session, 3-7
password verifiers, 2-6
session attributes

in application session, 3-23
SQL functions

ORA_CHECK_ACL, 10-4, D-2
ORA_CHECK_PRIVILEGE, 10-5
ORA_INVOKING_USER

returns name of current datanase user,
5-25

ORA_INVOKING_USERID
returns ID of current database user, 5-25

ORA_INVOKING_XS_USER
returns name of current Real Application

Security application user, 5-25
ORA_INVOKING_XS_USER_GUID

returns ID of current Real Application
Security application user, 5-25

TO_ACLID, 10-6
SQL operators

ORA_CHECK_ACL
checking ACLs for a privilege, 4-12

static data realms
about, 5-6
constraints

ACL evaluation order, 5-12
statistics in troubleshooting, D-3
switching

application users
in current application session, 3-8

SYS_GET_ACLIDS function
See ORA_GET_ACLIDS function

system-constraining ACL
about, 4-12
definition, 4-12

Index

Index-8

T
tables

data security policy
enabling, 11-48
removing from, 11-47

master-detail tables, Real Application
Security policies

about, 5-13
creating for, 5-14

time-out values
session

IDs, setting for, 11-18
TO_ACLID function, 10-6
trace files

acl, D-8
application roles, D-6
application sessions, D-4
application users, D-6
data security, D-8
policy predicate errors, 5-7
Real Application Security components, D-3
security classes, D-7

tracing
event and in-memory, D-3

traditional security model
manging application users

disadvantages of, 1-2
troubleshooting

acl, D-8
application principals, D-6
application sessions, D-4
data security, D-8
event-based tracing

about, D-3
components, D-3

exception dumps, D-10
exception state dumps, D-2
in-memory tracing, D-3
Real Application Security diagnostics, D-1
security classes, D-7
session statistics, D-10
statistics, D-3
using the ORA_CHECK_ACL function, D-2
using the ORA_GET_ACLIDS function, D-2
using validation APIs, D-1

U
use case scenario example policy

human resources administration of employee
information, 1-12

component requirements, 1-14
description and security requirements,

1-13

use case scenario example policy (continued)
human resources administration of employee information (continued)
implementation overview, 1-14

Java implementation, 6-15
authorizing with middle-tier API, 6-16
main method, 6-18
performing cleanup operations, 6-18
running a query on the database, 6-17
setting up connection, 6-16
setting up session, 6-16

user sessions, 3-1
See also application sessions

USER_XDS_ACL_REFRESH view, 9-39
USER_XDS_ACL_REFSTAT view, 9-39
USER_XDS_LATEST_ACL_REFSTAT view,

9-40
USER_XS_ACES view, 9-19
USER_XS_ACL_PARAMETERS view, 9-26
USER_XS_ACLS view, 9-17
USER_XS_COLUMN_CONSTRAINTS view,

9-28
USER_XS_IMPLIED_PRIVILEGES view, 9-13
USER_XS_INHERITED_REALMS view, 9-25
USER_XS_PASSWORD_LIMITS view, 9-8
USER_XS_POLICIES view, 9-21
USER_XS_PRIVILEGES view, 9-11
USER_XS_REALM_CONSTRAINTS view, 9-23
USER_XS_SECURITY_CLASS_DEP view, 9-16
USER_XS_SECURITY_CLASSES view, 9-15
USER_XS_USERS view, 9-7
users, 2-2

See also application users
using

constraining application privilege, 4-14
effective dates with application roles, 2-16
multilevel authentication, 4-12
ORA_CHECK_ACL SQL operator, 4-12
SQL functions

to determine the invoking application
user, 5-25

XS_DIAG.VALIDATE_PRINCIPAL function,
2-12, 2-15

V
V$XS_SESSION_NS_ATTRIBUTES view, 9-41
V$XS_SESSION_ROLES view, 9-41
validating

ACLs, 4-10, 11-54
application roles, 2-15
application users, 2-12
data security policy, 5-2, 11-55
namespaces, 11-56
principals, 11-52
security classes, 4-5, 11-53

Index

9

validating (continued)
workspace objects, 11-57

views, 9-1
ALL_XDS_ACL_REFRESH, 9-34
ALL_XDS_ACL_REFSTAT, 9-35
ALL_XDS_LATEST_ACL_REFSTAT, 9-36
ALL_XS_ACES, 9-20
ALL_XS_ACL_PARAMETERS, 9-27
ALL_XS_ACLS, 9-18
ALL_XS_APPLIED_POLICIES, 9-30
ALL_XS_COLUMN_CONSTRAINTS, 9-29
ALL_XS_IMPLIED_PRIVILEGES, 9-13
ALL_XS_INHERITED_REALMS, 9-25
ALL_XS_POLICIES, 9-22
ALL_XS_PRIVILEGES, 9-12
ALL_XS_REALM_CONSTRAINTS, 9-23
ALL_XS_SECURITY_CLASS_DEP, 9-16
ALL_XS_SECURITY_CLASSES, 9-15
DBA_XDS_ACL_REFRESH, 9-36
DBA_XDS_ACL_REFSTAT, 9-37
DBA_XDS_LATEST_ACL_REFSTAT, 9-38
DBA_XS_ACES, 9-18
DBA_XS_ACL_PARAMETERS, 9-26
DBA_XS_ACLS, 9-17
DBA_XS_ACTIVE_SESSIONS, 9-31
DBA_XS_APPLIED_POLICIES, 9-29
DBA_XS_COLUMN_CONSTRAINTS, 9-28
DBA_XS_DYNAMIC_ROLES, 9-9
DBA_XS_EXTERNAL_PRINCIPALS, 9-5
DBA_XS_IMPLIED_PRIVILEGES, 9-12
DBA_XS_INHERITED_REALMS, 9-24
DBA_XS_MODIFIED_POLICIES, 9-30
DBA_XS_NS_TEMPLATE_ATTRIBUTES,

9-34
DBA_XS_NS_TEMPLATES, 9-33
DBA_XS_OBJECTS, 9-4
DBA_XS_POLICIES, 9-21
DBA_XS_PRINCIPALS, 9-5
DBA_XS_PRIVILEGE_GRANTS, 9-14
DBA_XS_PRIVILEGES, 9-11
DBA_XS_PROXY_ROLES, 9-10
DBA_XS_REALM_CONSTRAINTS, 9-22
DBA_XS_ROLE_GRANTS, 9-10
DBA_XS_ROLES, 9-8
DBA_XS_SECURITY_CLASS_DEP, 9-15
DBA_XS_SECURITY_CLASSES, 9-14
DBA_XS_SESSION_NS_ATTRIBUTES,

9-32
DBA_XS_SESSION_ROLES, 9-32
DBA_XS_SESSIONS, 9-31
DBA_XS_USERS, 9-6
privileges in data security documents, 5-21
USER_XDS_ACL_REFRESH, 9-39
USER_XDS_ACL_REFSTAT, 9-39
USER_XDS_LATEST_ACL_REFSTAT, 9-40

views (continued)
USER_XS_ACES, 9-19
USER_XS_ACL_PARAMETERS, 9-26
USER_XS_ACLS, 9-17
USER_XS_COLUMN_CONSTRAINTS, 9-28
USER_XS_IMPLIED_PRIVILEGES, 9-13
USER_XS_INHERITED_REALMS, 9-25
USER_XS_PASSWORD_LIMITS, 9-8
USER_XS_POLICIES, 9-21
USER_XS_PRIVILEGES, 9-11
USER_XS_REALM_CONSTRAINTS, 9-23
USER_XS_SECURITY_CLASS_DEP, 9-16
USER_XS_SECURITY_CLASSES, 9-15
USER_XS_USERS, 9-7
V$XS_SESSION_NS_ATTRIBUTES, 9-41
V$XS_SESSION_ROLES, 9-41

W
when element

specifies a predicate for detail table, 5-13

X
XS_ACL PL/SQL package

about, 11-24
ADD_ACL_PARAMETER, 11-30
APPEND_ACES, 4-10, 11-27
constants, 11-24
CREATE_ACL, 11-26
DELETE_ACL, 11-32
object types, constructor functions, 11-25
REMOVE_ACES, 4-10, 11-28
REMOVE_ACL_PARAMETERS, 11-30
security model, 11-24
SET_DESCRIPTION, 11-31
SET_PARENT_ACL, 4-10, 4-14, 11-29
SET_SECURITY_CLASS, 4-10, 11-28

XS_ADMIN_UTIL PL/SQL package
about, 11-32
constants, 11-33
GRANT_SYSTEM_PRIVILEGE, 11-33
object types, 11-33
REVOKE_SYSTEM_PRIVILEGE, 11-34
security model, 11-33

XS_DATA_SECURITY PL/SQL package
about, 11-35
ADD_COLUMN_CONSTRAINTS Procedure,

11-41
APPEND_REALM_CONSTRAINTS

Procedure, 11-40
APPLY_OBJECT_POLICY, 5-11
APPLY_OBJECT_POLICY Procedure, 11-48
CREATE_ACL_PARAMETER Procedure,

11-42

Index

Index-10

XS_DATA_SECURITY PL/SQL package (continued)
CREATE_POLICY Procedure, 11-39
DELETE_ACL_PARAMETER Procedure,

11-43
DELETE_POLICY Procedure, 11-45
DISABLE_OBJECT_POLICY Procedure,

11-46
ENABLE_OBJECT_POLICY

affect on database tables, 5-11
ENABLE_OBJECT_POLICY Procedure,

11-45
object types, constructor functions, 11-36
REMOVE_COLUMN_CONSTRAINTS

Procedure, 11-42
REMOVE_OBJECT_POLICY Procedure,

11-47
REMOVE_REALM_CONSTRAINTS

Procedure, 11-40
security model, 11-36
SET_DESCRIPTION Procedure, 11-44

XS_DATA_SECURITY_UTIL PL/SQL package
about, 11-49
ALTER_STATIC_ACL_REFRESH

Procedure, 11-51
constants, 11-49
SCHEDULE_STATIC_ACL_REFRESH

Procedure, 11-50
security model, 11-49

XS_DIAG PL/SQL package
about, 11-52
security model, 11-52
VALIDATE_ACL, 4-10
VALIDATE_ACL Function, 11-54
VALIDATE_DATA_SECURITY, 5-2
VALIDATE_DATA_SECURITY Function,

11-55
VALIDATE_PRINCIPAL, 2-12, 2-15
VALIDATE_PRINCIPAL Function, 11-52
VALIDATE_SECURITY_CLASS, 4-5
VALIDATE_SECURITY_CLASS Function,

11-53
VALIDATE_WORKSPACE Function, 11-57

XS_DIAG PL/SQL PL/SQL package
VALIDATE_NAMESPACE_TEMPLATE

Function, 11-56
XS_NAMESPACE PL/SQL package

about, 11-58
ADD_ATTRIBUTES Procedure, 11-60
constants, 11-58
CREATE_TEMPLATE, 3-17
CREATE_TEMPLATE Procedure, 11-59
DELETE_TEMPLATE, 11-63
object types, constructor functions, 11-58
REMOVE_ATTRIBUTES Procedure, 11-61
security model, 11-58

XS_NAMESPACE PL/SQL package (continued)
SET_DESCRIPTION Procedure, 11-62
SET_HANDLER Procedure, 11-62

XS_PRINCIPAL PL/SQL package
about, 11-64
ADD_PROXY_TO_DBUSER Procedure,

11-74
ADD_PROXY_USER, 2-10
ADD_PROXY_USER Procedure, 11-72
constants, 11-64
CREATE_DYNAMIC_ROLE, 2-15
CREATE_DYNAMIC_ROLE Procedure,

11-69
CREATE_ROLE, 2-14
CREATE_ROLE Procedure, 11-68
CREATE_USER, 2-4, 2-16
CREATE_USER Procedure, 11-66
DELETE_PRINCIPAL Procedure, 11-86
ENABLE_BY_DEFAULT Procedure, 11-77
ENABLE_ROLES_BY_DEFAULT Procedure,

11-77
GRANT_ROLES, 2-18
GRANT_ROLES Procedure, 11-70
object types, constructor functions, 11-64
REMOVE_PROXY_FROM_DBUSER

Procedure, 11-74
REMOVE_PROXY_USERS Procedure,

11-73
REVOKE_ROLES Procedure, 11-71
security model, 11-64
SET_ACL Procedure, 11-79
SET_DESCRIPTION Procedure, 11-85
SET_DYNAMIC_ROLE_DURATION

Procedure, 11-76
SET_DYNAMIC_ROLE_SCOPE Procedure,

11-76
SET_EFFECTIVE_DATES Procedure, 11-75
SET_GUID Procedure, 11-78
SET_PASSWORD, 2-4
SET_PASSWORD Procedure, 11-82
SET_PROFILE, 2-4
SET_PROFILE Procedure, 11-80
SET_USER_SCHEMA Procedure, 11-78
SET_USER_STATUS Procedure, 11-81
SET_VERIFIER, 2-6
SET_VERIFIER Procedure, 11-83

XS_SECURITY_CLASS PL/SQL package
about, 11-87
ADD_IMPLIED_PRIVILEGES, 4-3, 4-5
ADD_IMPLIED_PRIVILEGES Procedure,

11-92
ADD_PARENTS, 4-5
ADD_PARENTS Procedure, 11-89
ADD_PRIVILEGES, 4-1, 4-5
ADD_PRIVILEGES Procedure, 11-90

Index

11

XS_SECURITY_CLASS PL/SQL package (continued)
CREATE_SECURITY_CLASS Procedure,

11-88
DELETE_SECURITY_CLASS, 4-5
DELETE_SECURITY_CLASS Procedure,

11-94
REMOVE_IMPLIED_PRIVILEGES, 4-5
REMOVE_IMPLIED_PRIVILEGES

Procedure, 11-92
REMOVE_PARENTS, 4-5
REMOVE_PARENTS Procedure, 11-89
REMOVE_PRIVILEGES, 4-5

XS_SECURITY_CLASS PL/SQL package (continued)
REMOVE_PRIVILEGES Procedure, 11-91
security model, 11-87
SET_DESCRIPTION, 4-5
SET_DESCRIPTION Procedure, 11-93

XS_SYS_CONTEXT function, 10-2
XSSessionManager

clearCache, 6-4
createAnonymousSession, 6-5
createSession, 6-5
getLowWaterMark, 6-4

Index

Index-12

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Real Application Security Administrator's and Developer's Guide
	Changes in Oracle Database Release 19c Version 19.1
	New Features
	Deprecated Features

	Changes in Oracle Database Release 18c Version 18.1
	New Features
	Deprecated Features

	Changes in Oracle Database 12c Release 2 (12.2.0.1)
	New Features
	Deprecated Features

	1 Introducing Oracle Database Real Application Security
	What Is Oracle Database Real Application Security?
	Disadvantages of Traditional Security for Managing Application Users
	Advantages of Real Application Security
	Architecture of Real Application Security

	Data Security Concepts Used in Real Application Security
	About Data Security with Oracle Database Real Application Security
	Principals: Users and Roles
	Understanding the Difference Between Database Users and Application Users
	Understanding the Difference Between Database Roles and Application Roles
	Granting Database Privileges to Application Users and Application Roles

	Application Privileges
	Security Classes in Oracle Database Real Application Security
	Access Control Entry (ACE)
	Access Control List (ACL)
	Data Security Policy

	Application Session Concepts Used in Application Security
	Flow of Design and Development
	Design Phase
	Development Flow Steps

	Scenario: Security Human Resources (HR) Demonstration of Employee Information
	Basic Security HR Demo Scenario: Description and Security Requirements
	Basic HR Scenario: Implementation Overview

	About Auditing in an Oracle Database Real Application Security Environment
	Support for Pluggable Databases

	2 Configuring Application Users and Application Roles
	About Configuring Application Users
	About Application User Accounts
	General Procedures for Creating Application User Accounts
	Other Tasks

	Creating a Simple Application User Account
	About Creating a Direct Login Application User Account
	Creating Direct Login Application User Accounts
	Procedure for Creating the Direct Login Application User Account
	Setting a Password Verifier for Direct Application User Accounts
	Oracle Label Security Context Is Established in Direct Logon Session

	Resetting the Application User's Password with the SQL*Plus PASSWORD Command
	Configuring an Application User Switch
	Validating an Application User

	About Configuring Application Roles
	About Application Roles
	Regular and Dynamic Application Roles
	Regular Application Roles
	Dynamic Application Roles

	About Configuring an Application Role
	Creating a Regular Application Role
	Creating a Dynamic Application Role
	Validating an Application Role

	Predefined Regular Application Roles and Dynamic Application Roles

	Effective Dates for Application Users and Application Roles
	About Granting Application Privileges to Principals
	About Granting an Application Role to an Application User
	Creating a New Application User and Granting This User an Application Role
	Granting an Application Role to an Existing Application User

	Granting an Application Role to Another Application Role
	Granting a Database Role to an Application Role

	3 Configuring Application Sessions
	About Application Sessions
	About Application Sessions in Real Application Security
	Advantages of Application Sessions

	About Creating and Maintaining Application Sessions
	Creating an Application Session
	Creating an Anonymous Application Session
	Attaching an Application Session to a Traditional Database Session
	Setting a Cookie for an Application Session
	Assigning an Application User to an Anonymous Application Session
	Switching a Current Application User to Another Application User in the Current Application Session
	About Creating a Global Callback Event Handler Procedure
	Configuring Global Callback Event Handlers for an Application Session
	Saving an Application Session
	Detaching an Application Session from a Traditional Database Session
	Destroying an Application Session

	About Manipulating the Application Session State
	About Using Namespace Templates to Create Namespaces
	Components of a Namespace Template
	About Namespace Views
	Creating a Namespace Template for an Application Session

	Initializing a Namespace in an Application Session
	Initializing a Namespace When the Session Is Created
	Initializing a Namespace When the Session Is Attached
	Initializing a Namespace When a Named Application User Is Assigned to an Anonymous Application Session
	Initializing a Namespace When the Application User Is Switched in an Application Session
	Initializing a Namespace Explicitly

	Setting Session Attributes in an Application Session
	Getting Session Attributes in an Application Session
	Creating Custom Attributes in an Application Session
	Deleting a Namespace in an Application Session
	Enabling Application Roles for a Session
	Disabling Application Roles for a Session

	About Administrative APIs for External Users and Roles
	About Real Application Security Session Privilege Scoping Through ACL
	Granting Session Privileges on a Principal Using an ACL

	4 Configuring Application Privileges and Access Control Lists
	About Application Privileges
	Aggregate Privilege
	ALL Privilege

	About Configuring Security Classes
	About Security Classes
	Security Class Inheritance
	Security Class as Privilege Scope
	DML Security Class
	About Validating Security Classes
	Manipulating Security Classes

	About Configuring Access Control Lists
	About ACLs and ACEs
	Creating ACLs and ACEs
	Deny
	Invert
	ACE Start-Date and End-Date

	About Validating Access Control Lists
	Updating Access Control Lists
	About Checking ACLs for a Privilege
	About Using Multilevel Authentication
	Principal Types
	Access Resolution Results
	ACE Evaluation Order
	ACL Inheritance
	Extending ACL Inheritance
	Constraining ACL Inheritance

	About ACL Catalog Views
	About Security Class Catalog Views

	Data Security
	Data Realms
	Parameterized ACL

	ACL Binding

	5 Configuring Data Security
	About Data Security
	About Validating the Data Security Policy
	Understanding the Structure of the Data Security Policy
	About Designing Data Realms
	About Understanding the Structure of a Data Realm
	About Using Static Data Realms
	Using Trace Files to Check for Policy Predicate Errors

	Applying Additional Application Privileges to a Column
	About Enabling Data Security Policy for a Database Table or View
	Enabling Real Application Security Using the APPLY_OBJECT_POLICY Procedure
	About Applying Multiple Policies for a Table or View

	About How the APPLY_OBJECT_POLICY Procedure Alters a Database Table
	About How ACLs on Table Data Are Evaluated

	About Creating Real Application Security Policies on Master-Detail Related Tables
	About Real Application Security Policies on Master-Detail Related Tables
	About Understanding the Structure of Master Detail Data Realms
	Example of Creating a Real Application Security Policy on Master-Detail Related Tables

	About Managing Application Privileges for Data Security Policies
	About Bypassing the Security Checks of a Real Application Security Policy
	Using the SQL*Plus SET SECUREDCOL Command

	Using BEQUEATH CURRENT_USER Views
	Using SQL Functions to Determine the Invoking Application User

	Real Application Security: Putting It All Together
	Basic HR Scenario: Implementation Tasks
	Connecting as User SYS to Create Real Application Security Users and Roles
	Creating Roles and Application Users
	Creating the Security Class and ACLS
	Creating the Data Security Policy
	Validating the Real Application Security Objects
	Disabling a Data Security Policy for a Table

	Running the Security HR Demo

	About Schema Level Real Application Security Policy Administration
	Setting Up and Enabling a Schema Level Data Security Policy
	Disabling the Data Security Policy and Revoking the System Privileges from the User

	6 Using Real Application Security in Java Applications
	About Initializing the Middle Tier
	About Mid-Tier Configuration Mode
	Using the getSessionManager Method
	About Changing the Middle-Tier Cache Setting
	About Setting the Maximum Cache Idle Time
	About Setting the Maximum Cache Size
	About Getting the Maximum Cache Idle Time
	About Getting the Maximum Cache Size
	About Removing Entries from the Cache
	About Setting the WaterMark
	About Getting the High WaterMark
	About Getting the Low WaterMark

	About Clearing the Cache

	About Managing Real Application Security Sessions
	Creating a Real Application Security User Session
	Attaching an Application Session
	Assigning or Switching an Application User
	Enabling Real Application Security Application Roles
	Enabling a Real Application Security Application Role
	Disabling a Real Application Security Application Role
	Checking If a Real Application Security Application Role Is Enabled

	About Performing Namespace Operations as Session User
	Creating Namespaces
	Deleting Namespaces
	Implicitly Creating Namespaces
	About Using Namespace Attributes
	Creating a Session Namespace Attribute
	About Setting a Session Namespace Attribute
	Getting a Session Namespace Attribute
	Listing Attributes
	Resetting Attributes
	Deleting Attributes

	About Performing Namespace Operations as Session Manager
	About Performing Miscellaneous Session-Related Activities
	About Getting the Oracle Connection Associated with the Session
	About Getting the Application User ID for the Session
	Getting the Session ID for the Session
	About Getting a String Representation of the Session
	Getting the Session Cookie
	Setting Session Inactivity Timeout as Session Manager
	Setting the Session Cookie as Session Manager

	Detaching an Application Session
	Destroying A Real Application Security Application Session

	Authenticating Application Users Using Java APIs
	About Authorizing Application Users Using ACLs
	Constructing an ACL Identifier
	Using the checkAcl Method
	About Getting Data Privileges Associated with a Specific ACL

	Human Resources Administration Use Case: Implementation in Java
	Output

	7 Oracle Fusion Middleware Integration with Real Application Security
	About External Users and External Roles
	Session APIs for External Users and Roles
	Namespace for External Users
	Creating a Session
	Attaching a Session
	Assigning a User to a Session
	Saving a Session and Aborting a Session

	8 Application Session Service in Oracle Fusion Middleware
	About Real Application Security Concepts
	About Application Session Service in Oracle Fusion Middleware
	About the Application Session Filter
	About the Application Session Filter Operation

	About Deployment
	About Application Configuration of the Application Session Filter
	Domain Configuration: Setting Up an Application Session Service to Work with OPSS and Oracle Fusion Middleware
	Prerequisites
	Manual Configuration
	About Automatic Configuration

	About Application Session APIs
	About Application Session APIs
	About Attaching to an Application Session
	Detaching from an Application Session
	Destroying an Application Session

	About the Privilege Elevation API
	Enabling a Dynamic Role in the Application Session

	About Namespace APIs
	About Creating a Namespace
	About Deleting a Namespace
	About Setting the Namespace Attribute
	About Deleting a Namespace Attribute
	Getting a Namespace Attribute

	About the Check Privilege API
	Checking a Privilege on the ACLs

	Human Resources Demo Use Case: Implementation in Java
	Setting Up the HR Demo Application for External Principals (setup.sql)
	About the Application Session Filter Configuration File (web.xml)
	About the Sample Servlet Application (MyHR.java)
	About the Filter to Set Up the Application Namespace (MyFilter.java)
	About the HR Demo Use Case - User Roles
	About the HR Demo (1) - Logged in as Employee LPOPP
	About the HR Demo (2) - Logged in as HRMGR
	About the HR Demo (3) - Logged in as a Team Manager

	9 Oracle Database Real Application Security Data Dictionary Views
	DBA_XS_OBJECTS
	DBA_XS_PRINCIPALS
	DBA_XS_EXTERNAL_PRINCIPALS
	DBA_XS_USERS
	USER_XS_USERS
	USER_XS_PASSWORD_LIMITS
	DBA_XS_ROLES
	DBA_XS_DYNAMIC_ROLES
	DBA_XS_PROXY_ROLES
	DBA_XS_ROLE_GRANTS
	DBA_XS_PRIVILEGES
	USER_XS_PRIVILEGES
	ALL_XS_PRIVILEGES
	DBA_XS_IMPLIED_PRIVILEGES
	USER_XS_IMPLIED_PRIVILEGES
	ALL_XS_IMPLIED_PRIVILEGES
	DBA_XS_PRIVILEGE_GRANTS
	DBA_XS_SECURITY_CLASSES
	USER_XS_SECURITY_CLASSES
	ALL_XS_SECURITY_CLASSES
	DBA_XS_SECURITY_CLASS_DEP
	USER_XS_SECURITY_CLASS_DEP
	ALL_XS_SECURITY_CLASS_DEP
	DBA_XS_ACLS
	USER_XS_ACLS
	ALL_XS_ACLS
	DBA_XS_ACES
	USER_XS_ACES
	ALL_XS_ACES
	DBA_XS_POLICIES
	USER_XS_POLICIES
	ALL_XS_POLICIES
	DBA_XS_REALM_CONSTRAINTS
	USER_XS_REALM_CONSTRAINTS
	ALL_XS_REALM_CONSTRAINTS
	DBA_XS_INHERITED_REALMS
	USER_XS_INHERITED_REALMS
	ALL_XS_INHERITED_REALMS
	DBA_XS_ACL_PARAMETERS
	USER_XS_ACL_PARAMETERS
	ALL_XS_ACL_PARAMETERS
	DBA_XS_COLUMN_CONSTRAINTS
	USER_XS_COLUMN_CONSTRAINTS
	ALL_XS_COLUMN_CONSTRAINTS
	DBA_XS_APPLIED_POLICIES
	ALL_XS_APPLIED_POLICIES
	DBA_XS_MODIFIED_POLICIES
	DBA_XS_SESSIONS
	DBA_XS_ACTIVE_SESSIONS
	DBA_XS_SESSION_ROLES
	DBA_XS_SESSION_NS_ATTRIBUTES
	DBA_XS_NS_TEMPLATES
	DBA_XS_NS_TEMPLATE_ATTRIBUTES
	ALL_XDS_ACL_REFRESH
	ALL_XDS_ACL_REFSTAT
	ALL_XDS_LATEST_ACL_REFSTAT
	DBA_XDS_ACL_REFRESH
	DBA_XDS_ACL_REFSTAT
	DBA_XDS_LATEST_ACL_REFSTAT
	USER_XDS_ACL_REFRESH
	USER_XDS_ACL_REFSTAT
	USER_XDS_LATEST_ACL_REFSTAT
	V$XS_SESSION_NS_ATTRIBUTES
	V$XS_SESSION_ROLES

	10 Oracle Database Real Application Security SQL Functions
	COLUMN_AUTH_INDICATOR Function
	XS_SYS_CONTEXT Function
	ORA_CHECK_ACL Function
	ORA_GET_ACLIDS Function
	ORA_CHECK_PRIVILEGE Function
	TO_ACLID Function

	11 Oracle Database Real Application Security PL/SQL Packages
	DBMS_XS_SESSIONS Package
	Security Model
	Constants
	Object Types, Constructor Functions, Synonyms, and Grants
	Summary of DBMS_XS_SESSIONS Subprograms
	CREATE_SESSION Procedure
	ATTACH_SESSION Procedure
	ASSIGN_USER Procedure
	SWITCH_USER Procedure
	CREATE_NAMESPACE Procedure
	CREATE_ATTRIBUTE Procedure
	SET_ATTRIBUTE Procedure
	GET_ATTRIBUTE Procedure
	RESET_ATTRIBUTE Procedure
	DELETE_ATTRIBUTE Procedure
	DELETE_NAMESPACE Procedure
	ENABLE_ROLE Procedure
	DISABLE_ROLE Procedure
	SET_SESSION_COOKIE Procedure
	REAUTH_SESSION Procedure
	SET_INACTIVITY_TIMEOUT Procedure
	SAVE_SESSION Procedure
	DETACH_SESSION Procedure
	DESTROY_SESSION Procedure
	ADD_GLOBAL_CALLBACK Procedure
	ENABLE_GLOBAL_CALLBACK Procedure
	DELETE_GLOBAL_CALLBACK Procedure

	XS_ACL Package
	Security Model for the XS_ACL Package
	Constants
	Object Types, Constructor Functions, Synonyms, and Grants
	Summary of XS_ACL Subprograms
	CREATE_ACL Procedure
	APPEND_ACES Procedure
	REMOVE_ACES Procedure
	SET_SECURITY_CLASS Procedure
	SET_PARENT_ACL Procedure
	ADD_ACL_PARAMETER Procedure
	REMOVE_ACL_PARAMETERS Procedure
	SET_DESCRIPTION Procedure
	DELETE_ACL Procedure

	XS_ADMIN_UTIL Package
	Security Model
	Constants
	Object Types, Constructor Functions, Synonyms, and Grants
	Summary of XS_ADMIN_UTIL Subprograms
	GRANT_SYSTEM_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

	XS_DATA_SECURITY Package
	Security Model for the XS_DATA_SECURITY Package
	Object Types, Constructor Functions, Synonyms, and Grants
	Summary of XS_DATA_SECURITY Subprograms
	CREATE_POLICY Procedure
	APPEND_REALM_CONSTRAINTS Procedure
	REMOVE_REALM_CONSTRAINTS Procedure
	ADD_COLUMN_CONSTRAINTS Procedure
	REMOVE_COLUMN_CONSTRAINTS Procedure
	CREATE_ACL_PARAMETER Procedure
	DELETE_ACL_PARAMETER Procedure
	SET_DESCRIPTION Procedure
	DELETE_POLICY Procedure
	ENABLE_OBJECT_POLICY Procedure
	DISABLE_OBJECT_POLICY Procedure
	REMOVE_OBJECT_POLICY Procedure
	APPLY_OBJECT_POLICY Procedure

	XS_DATA_SECURITY_UTIL Package
	Security Model
	Constants
	Summary of XS_DATA_SECURITY_UTIL Subprograms
	SCHEDULE_STATIC_ACL_REFRESH Procedure
	ALTER_STATIC_ACL_REFRESH Procedure

	XS_DIAG Package
	Security Model
	Summary of XS_DIAG Subprograms
	VALIDATE_PRINCIPAL Function
	VALIDATE_SECURITY_CLASS Function
	VALIDATE_ACL Function
	VALIDATE_DATA_SECURITY Function
	VALIDATE_NAMESPACE_TEMPLATE Function
	VALIDATE_WORKSPACE Function

	XS_NAMESPACE Package
	Security Model
	Constants
	Object Types, Constructor Functions, Synonyms, and Grants
	Summary of XS_NAMESPACE Subprograms
	CREATE_TEMPLATE Procedure
	ADD_ATTRIBUTES Procedure
	REMOVE_ATTRIBUTES Procedure
	SET_HANDLER Procedure
	SET_DESCRIPTION Procedure
	DELETE_TEMPLATE Procedure

	XS_PRINCIPAL Package
	Security Model
	Constants
	Object Types, Constructor Functions, Synonyms, and Grants
	Summary of XS_PRINCIPAL Subprograms
	CREATE_USER Procedure
	CREATE_ROLE Procedure
	CREATE_DYNAMIC_ROLE Procedure
	GRANT_ROLES Procedure
	REVOKE_ROLES Procedure
	ADD_PROXY_USER Procedure
	REMOVE_PROXY_USERS Procedure
	ADD_PROXY_TO_DBUSER
	REMOVE_PROXY_FROM_DBUSER Procedure
	SET_EFFECTIVE_DATES Procedure
	SET_DYNAMIC_ROLE_DURATION Procedure
	SET_DYNAMIC_ROLE_SCOPE Procedure
	ENABLE_BY_DEFAULT Procedure
	ENABLE_ROLES_BY_DEFAULT Procedure
	SET_USER_SCHEMA Procedure
	SET_GUID Procedure
	SET_ACL Procedure
	SET_PROFILE Procedure
	SET_USER_STATUS Procedure
	SET_PASSWORD Procedure
	SET_VERIFIER Procedure
	SET_DESCRIPTION Procedure
	DELETE_PRINCIPAL Procedure

	XS_SECURITY_CLASS Package
	Security Model for the XS_SECURITY_CLASS Package
	Summary of XS_SECURITY_CLASS Subprograms
	CREATE_SECURITY_CLASS Procedure
	ADD_PARENTS Procedure
	REMOVE_PARENTS Procedure
	ADD_PRIVILEGES Procedure
	REMOVE_PRIVILEGES Procedure
	ADD_IMPLIED_PRIVILEGES Procedure
	REMOVE_IMPLIED_PRIVILEGES Procedure
	SET_DESCRIPTION Procedure
	DELETE_SECURITY_CLASS Procedure

	12 Real Application Security HR Demo
	Overview of the Security HR Demo
	What Each Script Does
	Setting Up the Security HR Demo Components
	About Creating Roles and Application Users
	About Creating the Security Class and ACLs
	About Creating the Data Security Policy
	About Validating the Real Application Security Objects
	About Setting Up the Mid-Tier Related Configuration

	Running the Security HR Demo Using Direct Logon
	Running the Security HR Demo Attached to a Real Application Security Session
	Running the Security HR Demo Cleanup Script
	Running the Security HR Demo in the Java Interface
	About Using RASADM to Run the Security HR Demo
	About Running the RASADM Application
	Design Phase
	Development Flow
	About Using RASADM to Create the HR Demo
	About Creating Application Roles
	Using RASADM to Create Application Roles

	About Creating Application Users
	Using RASADM to Create Application Users

	About Creating the Data Security Policy
	Entering Policy Information
	Creating the Column Authorization
	Creating the Data Realm Authorizations
	Applying the Policy

	A Predefined Objects in Real Application Security
	Users
	Roles
	Regular Application Roles
	Dynamic Application Roles
	Database Roles

	Namespaces
	Security Classes
	ACLs

	B Configuring OCI and JDBC Applications for Column Authorization
	About Using OCI to Retrieve Column Authorization Indicators
	Example of Obtaining the Return Code
	About Using the Return Code and Indicator with Authorization Indicator
	About the Warning for Unknown Authorization Indicator
	Using OCI Describe for Column Security

	About Using JDBC to Retrieve Column Authorization Indicators
	About Checking Security Attributes for a Table Column
	About Checking User Authorization for a Table Column
	Example of Checking Security Attributes and User Authorization

	C Real Application Security HR Demo Files
	How to Run the Security HR Demo
	Scripts for the Security HR Demo
	hrdemo_setup.sql
	hrdemo.sql
	hrdemo_session.sql
	hrdemo.java
	hrdemo_clean.sql

	Generated Log Files for Each Script
	hrdemo_setup.log
	hrdemo.log
	hrdemo_run_sess.log
	hrdemo.log
	hrdemo_clean.log

	D Troubleshooting Oracle Database Real Application Security
	About Real Application Security Diagnostics
	About Using Validation APIs
	How to Check Which ACLs Are Associated with a Row for the Current User
	How to Find If a Privilege Is Granted in an ACL to a User
	About Exception State Dumps
	About Event-Based Tracing
	About In-Memory Tracing
	About Statistics

	About Event-Based Tracing of Real Application Security Components
	About Application Sessions (XSSESSION) Event-Based Tracing
	About Application Principals (XSPRINCIPAL) Event-Based Tracing
	About Security Classes (XSSECCLASS) Event-Based Tracing
	About ACL (XSACL) Event-Based Tracing
	About Data Security (XSXDS and XSVPD) Event-Based Tracing

	About Exception State Dump Information
	About Session Statistics
	Using Middle-Tier Tracing

	Glossary
	access control entry (ACE)
	access control list (ACL)
	ACE
	ACL
	aggregate privilege
	application role
	application session
	application user
	column level security
	custom privilege
	data realm
	database role
	database user
	dynamic ACL
	dynamic application role
	dynamic data realm constraint
	function security
	globally unique identifier (GUID)
	GUID
	heavyweight role
	heavyweight user
	namespace
	object instance
	password verifier
	principal
	privilege
	security class
	static ACL
	static data realm constraint
	system privilege
	unique identifier (UID)
	UID
	user switch

	Index

